Gradient Gating for Deep Multi-Rate Learning on Graphs
METADATA ONLY
Loading...
Author / Producer
Date
2022-10
Publication Type
Report
ETH Bibliography
yes
Citations
Altmetric
METADATA ONLY
Data
Rights / License
Abstract
We present Gradient Gating (G2), a novel framework for improving the performance of Graph Neural Networks (GNNs). Our framework is based on gating the output of GNN layers with a mechanism for multi-rate flow of message passing information across nodes of the underlying graph. Local gradients are harnessed to further modulate message passing updates. Our framework flexibly allows one to use any basic GNN layer as a wrapper around which the multi-rate gradient gating mechanism is built. We rigorously prove that G2 alleviates the oversmoothing problem and allows the design of deep GNNs. Empirical results are presented to demonstrate that the proposed framework achieves state-of-the-art performance on a variety of graph learning tasks, including on large-scale heterophilic graphs.
Permanent link
Publication status
published
Editor
Book title
Journal / series
Volume
2022-41
Pages / Article No.
Publisher
Seminar for Applied Mathematics, ETH Zurich
Event
Edition / version
Methods
Software
Geographic location
Date collected
Date created
Subject
Organisational unit
03851 - Mishra, Siddhartha / Mishra, Siddhartha
Notes
Funding
770880 - Computation and analysis of statistical solutions of fluid flow (EC)