A Bayesian model to treat within-category and crew-to-crew variability in simulator data for Human Reliability Analysis


Date

2021-02

Publication Type

Journal Article

ETH Bibliography

yes

Citations

Altmetric

Data

Abstract

The models adopted in Human Reliability Analysis (HRA) characterize personnel tasks and performance conditions via categories of task and influencing factors (e.g. task types and Performance Shaping Factors, PSF). These categories cover the variability of the operational tasks and conditions affecting performance, and of the associated Human Error Probability (HEP). However, variability exists as well within such categories, for example because of the different scenarios and plants in which data is collected, as well as of the operating crew differences (within-category and crew-to-crew variability). This paper presents a Bayesian model to mathematically aggregate simulator data to estimate failure probabilities, explicitly accounting for the specific tasks, scenarios, plants and crew behavior variability, within a given “constellation” (i.e. combination) of task and factor categories. The general aim of the proposed work is to provide future HRA with reference data with stronger empirical basis for failure probability values, both for their nominal values as well as for their variability and uncertainty. Numerical applications with both artificially-generated data and real simulator data are provided to demonstrate the effects of modelling variability in HEP estimates, to avoid potential overconfidence and biases. The applicability of the proposed model to ongoing simulator data collection programs is also investigated.

Publication status

published

Editor

Book title

Volume

206

Pages / Article No.

107309

Publisher

Elsevier

Event

Edition / version

Methods

Software

Geographic location

Date collected

Date created

Subject

Human reliability analysis; Simulator data; Performance variability; SACADA; HuREX; Bayesian inference

Organisational unit

03725 - Prasser, Horst-Michael (emeritus) / Prasser, Horst-Michael (emeritus) check_circle

Notes

Funding

Related publications and datasets