Strategies to enable large-scale proteomics for reproducible research


Loading...

Date

2020-12

Publication Type

Journal Article

ETH Bibliography

yes

Citations

Altmetric

Data

Abstract

Reproducible research is the bedrock of experimental science. To enable the deployment of large-scale proteomics, we assess the reproducibility of mass spectrometry (MS) over time and across instruments and develop computational methods for improving quantitative accuracy. We perform 1560 data independent acquisition (DIA)-MS runs of eight samples containing known proportions of ovarian and prostate cancer tissue and yeast, or control HEK293T cells. Replicates are run on six mass spectrometers operating continuously with varying maintenance schedules over four months, interspersed with ~5000 other runs. We utilise negative controls and replicates to remove unwanted variation and enhance biological signal, outperforming existing methods. We also design a method for reducing missing values. Integrating these computational modules into a pipeline (ProNorM), we mitigate variation among instruments over time and accurately predict tissue proportions. We demonstrate how to improve the quantitative analysis of large-scale DIA-MS data, providing a pathway toward clinical proteomics.

Publication status

published

Editor

Book title

Volume

11 (1)

Pages / Article No.

3793

Publisher

Nature

Event

Edition / version

Methods

Software

Geographic location

Date collected

Date created

Subject

Organisational unit

03663 - Aebersold, Rudolf (emeritus) / Aebersold, Rudolf (emeritus) check_circle

Notes

Funding

Related publications and datasets