Show simple item record

dc.contributor.author
Lee, Yih H.
dc.contributor.author
Shi, Wenxiong
dc.contributor.author
Lee, Hiang K.
dc.contributor.author
Jiang, Ruibin
dc.contributor.author
Phang, In Y.
dc.contributor.author
Cui, Yan
dc.contributor.author
Isa, Lucio
dc.contributor.author
Yang, Yijie
dc.contributor.author
Wang, Jianfang
dc.contributor.author
Li, Shuzhou
dc.contributor.author
Ling, Xing Y.
dc.date.accessioned
2018-09-07T16:27:56Z
dc.date.available
2017-06-11T17:24:38Z
dc.date.available
2018-09-07T16:27:56Z
dc.date.issued
2015
dc.identifier.other
10.1038/ncomms7990
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/100836
dc.identifier.doi
10.3929/ethz-b-000100836
dc.description.abstract
A major challenge in nanoparticle self-assembly is programming the large-area organization of a single type of anisotropic nanoparticle into distinct superlattices with tunable packing efficiencies. Here we utilize nanoscale surface chemistry to direct the self-assembly of silver octahedra into three distinct two-dimensional plasmonic superlattices at a liquid/liquid interface. Systematically tuning the surface wettability of silver octahedra leads to a continuous superlattice structural evolution, from close-packed to progressively open structures. Notably, silver octahedra standing on vertices arranged in a square lattice is observed using hydrophobic particles. Simulations reveal that this structural evolution arises from competing interfacial forces between the particles and both liquid phases. Structure-to-function characterizations reveal that the standing octahedra array generates plasmonic ‘hotstrips’, leading to nearly 10-fold more efficient surface-enhanced Raman scattering compared with the other more densely packed configurations. The ability to assemble these superlattices on the wafer scale over various platforms further widens their potential applications.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature Publishing Group
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2015-04-29
ethz.journal.title
Nature Communications
ethz.journal.volume
6
en_US
ethz.pages.start
6990
en_US
ethz.size
7 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.nebis
007044158
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::09455 - Isa, Lucio / Isa, Lucio
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::09455 - Isa, Lucio / Isa, Lucio
ethz.date.deposited
2017-06-11T17:25:13Z
ethz.source
ECIT
ethz.identifier.importid
imp5936532b8e2c116210
ethz.ecitpid
pub:158345
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-08-01T17:51:29Z
ethz.rosetta.lastUpdated
2019-02-03T07:48:55Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Nanoscale%20surface%20chemistry%20directs%20the%20tunable%20assembly%20of%20silver%20octahedra%20into%20three%20two-dimensional%20plasmonic%20superlattices&rft.jtitle=Nature%20Communications&rft.date=2015&rft.volume=6&rft.spage=6990&rft.au=Lee,%20Yih%20H.&Shi,%20Wenxiong&Lee,%20Hiang%20K.&Jiang,%20Ruibin&Phang,%20In%20Y.&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record