Matrix-valued Bessel processes
dc.contributor.author
Larsson, Martin
dc.date.accessioned
2021-08-02T14:35:14Z
dc.date.available
2017-06-11T18:10:49Z
dc.date.available
2021-08-02T14:35:14Z
dc.date.issued
2015
dc.identifier.issn
1083-6489
dc.identifier.other
10.1214/EJP.v20-3785
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/102185
dc.identifier.doi
10.3929/ethz-b-000102185
dc.description.abstract
This paper introduces a matrix analog of the Bessel processes, taking values in the closed set E of real square matrices with nonnegative determinant. They are related to the well-known Wishart processes in a simple way: the latter are obtained from the former via the map x↦x⊤x. The main focus is on existence and uniqueness via the theory of Dirichlet forms. This leads us to develop new results of potential theoretic nature concerning the space of real square matrices. Specifically, the function w(x)=|detx|α is a weight function in the Muckenhoupt Ap class for −1 <α≤0 (p=1) and −1<α<p−1 (p>1). The set of matrices of co-rank at least two has zero capacity with respect to the measure m(dx)=|detx|αdx if α>−1, and if α≥1 this even holds for the set of all singular matrices. As a consequence we obtain density results for Sobolev spaces over (the interior of) E with Neumann boundary conditions. The highly non-convex, non Lipschitz structure of the state space is dealt with using a combination of geometric and algebraic methods.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Institute of Mathematical Statistics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject
Matrix-valued process
en_US
dc.subject
Bessel process
en_US
dc.subject
Wishart process
en_US
dc.subject
Muckenhoupt weight
en_US
dc.subject
Positive determinant matrix
en_US
dc.subject
Reflecting boundary condition
en_US
dc.title
Matrix-valued Bessel processes
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
ethz.journal.title
Electronic Journal of Probability
ethz.journal.volume
20
en_US
ethz.journal.abbreviated
Electron. J. Probab.
ethz.pages.start
60
en_US
ethz.size
29 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.nebis
005410469
ethz.publication.place
Beachwood, OH
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::09546 - Larsson, Martin (ehemalig) / Larsson, Martin (former)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::09546 - Larsson, Martin (ehemalig) / Larsson, Martin (former)
ethz.date.deposited
2017-06-11T18:11:47Z
ethz.source
ECIT
ethz.identifier.importid
imp5936534a7bcc627403
ethz.ecitpid
pub:160312
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-08-01T12:19:21Z
ethz.rosetta.lastUpdated
2022-03-29T10:52:57Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Matrix-valued%20Bessel%20processes&rft.jtitle=Electronic%20Journal%20of%20Probability&rft.date=2015&rft.volume=20&rft.spage=60&rft.issn=1083-6489&rft.au=Larsson,%20Martin&rft.genre=article&rft_id=info:doi/10.1214/EJP.v20-3785&
Files in this item
Publication type
-
Journal Article [120834]