Show simple item record

dc.contributor.author
Arnon-Friedman, Rotem
dc.contributor.author
Renner, Renato
dc.date.accessioned
2021-04-15T04:50:42Z
dc.date.available
2017-06-11T18:10:59Z
dc.date.available
2020-11-27T17:56:24Z
dc.date.available
2021-04-13T14:41:42Z
dc.date.available
2021-04-15T04:50:42Z
dc.date.issued
2015-05-20
dc.identifier.issn
1089-7658
dc.identifier.issn
0022-2488
dc.identifier.other
10.1063/1.4921341
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/102201
dc.identifier.doi
10.3929/ethz-b-000102201
dc.description.abstract
When analysing quantum information processing protocols, one has to deal with large entangled systems, each consisting of many subsystems. To make this analysis feasible, it is often necessary to identify some additional structures. de Finetti theorems provide such a structure for the case where certain symmetries hold. More precisely, they relate states that are invariant under permutations of subsystems to states in which the subsystems are independent of each other. This relation plays an important role in various areas, e.g., in quantum cryptography or state tomography, where permutation invariant systems are ubiquitous. The known de Finetti theorems usually refer to the internal quantum state of a system and depend on its dimension. Here, we prove a different de Finetti theorem where systems are modelled in terms of their statistics under measurements. This is necessary for a large class of applications widely considered today, such as device independent protocols, where the underlying systems and the dimensions are unknown and the entire analysis is based on the observed correlations.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Institute of Physics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.title
de Finetti reductions for correlations
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
dc.date.published
2015-05-20
ethz.journal.title
Journal of Mathematical Physics
ethz.journal.volume
56
en_US
ethz.journal.issue
5
en_US
ethz.journal.abbreviated
J. Math. Phys.
ethz.pages.start
052203
en_US
ethz.size
23 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Melville New York
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03781 - Renner, Renato / Renner, Renato
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03781 - Renner, Renato / Renner, Renato
ethz.date.deposited
2017-06-11T18:11:47Z
ethz.source
ECIT
ethz.identifier.importid
imp5936534ade01986641
ethz.ecitpid
pub:160328
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-13T19:01:38Z
ethz.rosetta.lastUpdated
2023-02-06T21:41:51Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=de%20Finetti%20reductions%20for%20correlations&rft.jtitle=Journal%20of%20Mathematical%20Physics&rft.date=2015-05-20&rft.volume=56&rft.issue=5&rft.spage=052203&rft.issn=1089-7658&0022-2488&rft.au=Arnon-Friedman,%20Rotem&Renner,%20Renato&rft.genre=article&rft_id=info:doi/10.1063/1.4921341&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record