Recognizing personalized flexible activity patterns
dc.contributor.author
Ordóñez Medina, Sergio A.
dc.date.accessioned
2018-04-24T09:54:18Z
dc.date.available
2017-06-11T19:08:42Z
dc.date.available
2018-04-02T14:45:59Z
dc.date.available
2018-04-03T08:57:34Z
dc.date.available
2018-04-03T09:30:52Z
dc.date.available
2018-04-24T09:54:18Z
dc.date.issued
2015-04
dc.identifier.uri
http://hdl.handle.net/20.500.11850/103800
dc.identifier.doi
10.3929/ethz-b-000103800
dc.description.abstract
In people’s daily plans, mandatory activities like rest, work or study, are already prearranged or fixed. Time planning or scheduling is therefore primarily to organize flexible activities and trips during the remaining time windows. Models of scheduling become powerful when they can be used to obtain macroscopic insights from microscopic changes. This paper presents a method to extract and model flexible activity patterns from real data, and to use them for activity chain generation. It proposes a multi-activity scheduling method which (i) doesn’t prioritize or fix any scheduling dimension, (ii) uses commonly available data (i.e. travel surveys and land use datasets) as its input, (iii) generates personalized solutions, and (iv) can be configured to be computed in tractable time for realistic time windows. Based on the concepts of known places and activity agenda, this method uses socio-demographic characteristics and matched behavioural parameters of the decision maker to schedule his/her flexible activities. To show the applicability and efficiency of this approach, flexible activity patterns from Singapore were extracted from a travel survey carried out in 2012. This survey contains reported motorized trips of 1% of the population during one day. A dataset with information of more than 100.000 activity locations, and estimated dynamic travel times from a large- scale agent-based transport model were employed for the calculations. The method was tested with a fraction of the survey observations which were not used for the estimation of the models. In order to assess the relevance of the personalized mechanisms of the model, the utility maximization algorithm was applied several times, comparing random locations versus systematically selected locations and randomly generated agendas versus systematically constructed agendas. Although in both cases optimal activity schedules are successfully generated, results show much better fit when personalized models are applied.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IVT, ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Activity scheduling
en_US
dc.subject
Agenda
en_US
dc.subject
Discrete choice models
en_US
dc.subject
Utility maximization
en_US
dc.subject
Location
en_US
dc.title
Recognizing personalized flexible activity patterns
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
33 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
14th International Conference on Travel Behavior Research (IATBR 2015)
en_US
ethz.event.location
Windsor, United Kingdom
en_US
ethz.event.date
July 19-23, 2015
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::08058 - Singapore-ETH Centre (SEC) / Singapore-ETH Centre (SEC)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::03521 - Axhausen, Kay W. (emeritus) / Axhausen, Kay W. (emeritus)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt und Landschaft D-ARCH::02226 - NSL - Netzwerk Stadt und Landschaft / NSL - Network City and Landscape
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
*
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::08058 - Singapore-ETH Centre (SEC) / Singapore-ETH Centre (SEC)::08060 - FCL / FCL
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::03521 - Axhausen, Kay W. (emeritus) / Axhausen, Kay W. (emeritus)
ethz.tag
FCL1
ethz.date.deposited
2017-06-11T19:09:27Z
ethz.source
ECIT
ethz.identifier.importid
imp5936536fc4b5d70944
ethz.ecitpid
pub:162201
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-19T09:05:39Z
ethz.rosetta.lastUpdated
2024-02-02T04:30:21Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Recognizing%20personalized%20flexible%20activity%20patterns&rft.date=2015-04&rft.au=Ord%C3%B3%C3%B1ez%20Medina,%20Sergio%20A.&rft.genre=proceeding&rft.btitle=Recognizing%20personalized%20flexible%20activity%20patterns
Files in this item
Publication type
-
Conference Paper [35280]