Show simple item record

dc.contributor.author
Campbell, Kate
dc.contributor.author
Vowinckel, Jakob
dc.contributor.author
Mülleder, Michael
dc.contributor.author
Malmsheimer, Silke
dc.contributor.author
Lawrence, Nicola
dc.contributor.author
Calvani, Enrica
dc.contributor.author
Miller-Fleming, Leonor
dc.contributor.author
Alam, Mohammad T.
dc.contributor.author
Christen, Stefan
dc.contributor.author
Keller, Markus A.
dc.contributor.author
Ralser, Markus
dc.date.accessioned
2018-09-11T16:15:51Z
dc.date.available
2017-06-11T22:20:33Z
dc.date.available
2018-09-11T16:15:51Z
dc.date.issued
2015-10
dc.identifier.other
10.7554/eLife.09943
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/109149
dc.identifier.doi
10.3929/ethz-b-000109149
dc.description.abstract
Metabolite exchange among co-growing cells is frequent by nature, however, is not necessarily occurring at growth-relevant quantities indicative of non-cell-autonomous metabolic function. Complementary auxotrophs of Saccharomyces cerevisiae amino acid and nucleotide metabolism regularly fail to compensate for each other's deficiencies upon co-culturing, a situation which implied the absence of growth-relevant metabolite exchange interactions. Contrastingly, we find that yeast colonies maintain a rich exometabolome and that cells prefer the uptake of extracellular metabolites over self-synthesis, indicators of ongoing metabolite exchange. We conceived a system that circumvents co-culturing and begins with a self-supporting cell that grows autonomously into a heterogeneous community, only able to survive by exchanging histidine, leucine, uracil, and methionine. Compensating for the progressive loss of prototrophy, self-establishing communities successfully obtained an auxotrophic composition in a nutrition-dependent manner, maintaining a wild-type like exometabolome, growth parameters, and cell viability. Yeast, as a eukaryotic model, thus possesses extensive capacity for growth-relevant metabolite exchange and readily cooperates in metabolism within progressively establishing communities.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
eLife Sciences Publications
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Self-establishing communities enable cooperative metabolite exchange in a eukaryote
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
eLife
ethz.journal.volume
4
en_US
ethz.pages.start
e09943
en_US
ethz.size
23 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.nebis
007613147
ethz.publication.place
Cambridge
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2017-06-11T22:21:08Z
ethz.source
ECIT
ethz.identifier.importid
imp593653dcbf9a738724
ethz.ecitpid
pub:170196
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-15T14:53:52Z
ethz.rosetta.lastUpdated
2018-09-11T16:16:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Self-establishing%20communities%20enable%20cooperative%20metabolite%20exchange%20in%20a%20eukaryote&rft.jtitle=eLife&rft.date=2015-10&rft.volume=4&rft.spage=e09943&rft.au=Campbell,%20Kate&Vowinckel,%20Jakob&M%C3%BClleder,%20Michael&Malmsheimer,%20Silke&Lawrence,%20Nicola&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record