Show simple item record

dc.contributor.author
Antonov, Lubomir D.
dc.contributor.author
Olsson, Simon
dc.contributor.author
Boomsma, Wouter
dc.contributor.author
Hamelryck, Thomas
dc.date.accessioned
2023-07-15T11:13:42Z
dc.date.available
2017-06-12T02:15:16Z
dc.date.available
2023-07-15T11:13:42Z
dc.date.issued
2016
dc.identifier.issn
1463-9084
dc.identifier.issn
1463-9076
dc.identifier.other
10.1039/c5cp04886a
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/113892
dc.identifier.doi
10.3929/ethz-b-000113892
dc.description.abstract
The inherent flexibility of intrinsically disordered proteins (IDPs) and multi-domain proteins with intrinsically disordered regions (IDRs) presents challenges to structural analysis. These macromolecules need to be represented by an ensemble of conformations, rather than a single structure. Small-angle X-ray scattering (SAXS) experiments capture ensemble-averaged data for the set of conformations. We present a Bayesian approach to ensemble inference from SAXS data, called Bayesian ensemble SAXS (BE-SAXS). We address two issues with existing methods: the use of a finite ensemble of structures to represent the underlying distribution, and the selection of that ensemble as a subset of an initial pool of structures. This is achieved through the formulation of a Bayesian posterior of the conformational space. BE-SAXS modifies a structural prior distribution in accordance with the experimental data. It uses multi-step expectation maximization, with alternating rounds of Markov-chain Monte Carlo simulation and empirical Bayes optimization. We demonstrate the method by employing it to obtain a conformational ensemble of the antitoxin PaaA2 and comparing the results to a published ensemble.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Royal Society of Chemistry
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.title
Bayesian inference of protein ensembles from SAXS data
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
dc.date.published
2015-10-28
ethz.journal.title
Physical Chemistry Chemical Physics
ethz.journal.volume
18
en_US
ethz.journal.issue
8
en_US
ethz.journal.abbreviated
Phys. Chem. Chem. Phys.
ethz.pages.start
5832
en_US
ethz.pages.end
5838
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.nebis
002005974
ethz.publication.place
Cambridge
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2017-06-12T02:18:03Z
ethz.source
ECIT
ethz.identifier.importid
imp593654315b17833447
ethz.ecitpid
pub:175638
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-13T00:18:39Z
ethz.rosetta.lastUpdated
2024-02-03T01:42:20Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Bayesian%20inference%20of%20protein%20ensembles%20from%20SAXS%20data&rft.jtitle=Physical%20Chemistry%20Chemical%20Physics&rft.date=2016&rft.volume=18&rft.issue=8&rft.spage=5832&rft.epage=5838&rft.issn=1463-9084&1463-9076&rft.au=Antonov,%20Lubomir%20D.&Olsson,%20Simon&Boomsma,%20Wouter&Hamelryck,%20Thomas&rft.genre=article&rft_id=info:doi/10.1039/c5cp04886a&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record