Zur Kurzanzeige

dc.contributor.author
Hyland, Callen
dc.contributor.author
Mertz, Aaron F.
dc.contributor.author
Forscher, Paul
dc.contributor.author
Dufresne, Eric R.
dc.date.accessioned
2018-10-12T12:54:06Z
dc.date.available
2017-06-12T03:26:28Z
dc.date.available
2018-10-12T12:54:06Z
dc.date.issued
2014-05-14
dc.identifier.other
10.1038/srep04961
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/114671
dc.identifier.doi
10.3929/ethz-b-000114671
dc.description.abstract
Growth cones of elongating neurites exert force against the external environment, but little is known about the role of force in outgrowth or its relationship to the mechanical organization of neurons. We used traction force microscopy to examine patterns of force in growth cones of regenerating Aplysia bag cell neurons. We find that traction is highest in the peripheral actin-rich domain and internal stress reaches a plateau near the transition between peripheral and central microtubule-rich domains. Integrating stress over the area of the growth cone reveals that total scalar force increases with area but net tension on the neurite does not. Tensions fall within a limited range while a substantial fraction of the total force can be balanced locally within the growth cone. Although traction continuously redistributes during extension and retraction of the peripheral domain, tension is stable over time, suggesting that tension is a tightly regulated property of the neurite independent of growth cone dynamics. We observe that redistribution of traction in the peripheral domain can reorient the end of the neurite shaft. This suggests a role for off-axis force in growth cone turning and neuronal guidance.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature Publishing Group
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject
Cellular neuroscience
en_US
dc.subject
Cellular motility
en_US
dc.title
Dynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
ethz.journal.title
Scientific Reports
ethz.journal.volume
4
en_US
ethz.pages.start
4961
en_US
ethz.size
8 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.nebis
006751867
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::09573 - Dufresne, Eric / Dufresne, Eric
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::09573 - Dufresne, Eric / Dufresne, Eric
ethz.date.deposited
2017-06-12T03:30:51Z
ethz.source
ECIT
ethz.identifier.importid
imp593654438d00254618
ethz.ecitpid
pub:176471
ethz.eth
no
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-18T08:11:23Z
ethz.rosetta.lastUpdated
2019-01-02T14:29:53Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Dynamic%20peripheral%20traction%20forces%20balance%20stable%20neurite%20tension%20in%20regenerating%20Aplysia%20bag%20cell%20neurons&rft.jtitle=Scientific%20Reports&rft.date=2014-05-14&rft.volume=4&rft.spage=4961&rft.au=Hyland,%20Callen&Mertz,%20Aaron%20F.&Forscher,%20Paul&Dufresne,%20Eric%20R.&rft.genre=article&
 Suchen via SFX

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige