Linear effects models of signaling pathways from combinatorial perturbation data
dc.contributor.author
Szczurek, Ewa
dc.contributor.author
Beerenwinkel, Niko
dc.date.accessioned
2021-10-15T08:47:03Z
dc.date.available
2017-06-12T08:44:21Z
dc.date.available
2021-10-15T08:47:03Z
dc.date.issued
2016-06
dc.identifier.issn
1367-4803
dc.identifier.issn
1460-2059
dc.identifier.other
10.1093/bioinformatics/btw268
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/118146
dc.identifier.doi
10.3929/ethz-b-000118146
dc.description.abstract
Motivation: Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects.
Results: Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiae .
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Oxford University Press
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Linear effects models of signaling pathways from combinatorial perturbation data
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2016-06-11
ethz.journal.title
Bioinformatics
ethz.journal.volume
32
en_US
ethz.journal.issue
12
en_US
ethz.journal.abbreviated
Bioinformatics
ethz.pages.start
i297
en_US
ethz.pages.end
i305
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03790 - Beerenwinkel, Niko / Beerenwinkel, Niko
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03790 - Beerenwinkel, Niko / Beerenwinkel, Niko
ethz.date.deposited
2017-06-12T08:49:16Z
ethz.source
ECIT
ethz.identifier.importid
imp593654874927d98965
ethz.ecitpid
pub:180089
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-12T21:05:13Z
ethz.rosetta.lastUpdated
2024-02-02T15:07:36Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Linear%20effects%20models%20of%20signaling%20pathways%20from%20combinatorial%20perturbation%20data&rft.jtitle=Bioinformatics&rft.date=2016-06&rft.volume=32&rft.issue=12&rft.spage=i297&rft.epage=i305&rft.issn=1367-4803&1460-2059&rft.au=Szczurek,%20Ewa&Beerenwinkel,%20Niko&rft.genre=article&rft_id=info:doi/10.1093/bioinformatics/btw268&
Files in this item
Publication type
-
Journal Article [130568]