Show simple item record

dc.contributor.author
Yunger Halpern, Nicole
dc.contributor.author
Faist, Philippe
dc.contributor.author
Oppenheim, Jonathan
dc.contributor.author
Winter, Andreas
dc.date.accessioned
2018-09-11T15:03:21Z
dc.date.available
2017-06-12T09:06:58Z
dc.date.available
2018-09-11T15:03:21Z
dc.date.issued
2016
dc.identifier.issn
2041-1723
dc.identifier.other
10.1038/ncomms12051
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/118384
dc.identifier.doi
10.3929/ethz-b-000118384
dc.description.abstract
The grand canonical ensemble lies at the core of quantum and classical statistical mechanics. A small system thermalizes to this ensemble while exchanging heat and particles with a bath. A quantum system may exchange quantities represented by operators that fail to commute. Whether such a system thermalizes and what form the thermal state has are questions about truly quantum thermodynamics. Here we investigate this thermal state from three perspectives. First, we introduce an approximate microcanonical ensemble. If this ensemble characterizes the system-and-bath composite, tracing out the bath yields the system’s thermal state. This state is expected to be the equilibrium point, we argue, of typical dynamics. Finally, we define a resource-theory model for thermodynamic exchanges of noncommuting observables. Complete passivity—the inability to extract work from equilibrium states—implies the thermal state’s form, too. Our work opens new avenues into equilibrium in the presence of quantum noncommutation.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2016-07-07
ethz.journal.title
Nature Communications
ethz.journal.volume
7
en_US
ethz.journal.abbreviated
Nat Commun
ethz.pages.start
12051
en_US
ethz.size
7 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.nebis
007044158
ethz.publication.place
London
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03781 - Renner, Renato / Renner, Renato
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03781 - Renner, Renato / Renner, Renato
ethz.date.deposited
2017-06-12T09:08:45Z
ethz.source
ECIT
ethz.identifier.importid
imp5936548c3f95a83852
ethz.ecitpid
pub:180337
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-13T00:27:02Z
ethz.rosetta.lastUpdated
2024-02-02T06:02:35Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Microcanonical%20and%20resource-theoretic%20derivations%20of%20the%20thermal%20state%20of%20a%20quantum%20system%20with%20noncommuting%20charges&rft.jtitle=Nature%20Communications&rft.date=2016&rft.volume=7&rft.spage=12051&rft.issn=2041-1723&rft.au=Yunger%20Halpern,%20Nicole&Faist,%20Philippe&Oppenheim,%20Jonathan&Winter,%20Andreas&rft.genre=article&rft_id=info:doi/10.1038/ncomms12051&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record