Show simple item record

dc.contributor.author
Saletti, Matteo
dc.contributor.author
Molnar, Peter
dc.contributor.author
Hassan, Marwan A.
dc.contributor.author
Burlando, Paolo
dc.date.accessioned
2019-05-16T13:38:24Z
dc.date.available
2017-06-12T10:02:51Z
dc.date.available
2019-05-16T13:38:24Z
dc.date.issued
2016-07-20
dc.identifier.other
10.5194/esurf-4-549-2016
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/118953
dc.identifier.doi
10.3929/ethz-b-000118953
dc.description.abstract
A new particle-based reduced-complexity model to simulate sediment transport and channel morphology in steep streams in presented. The model CAST (Cellular Automaton Sediment Transport) contains phenomenological parameterizations, deterministic or stochastic, of sediment supply, bed load transport, and particle entrainment and deposition in a cellular-automaton space with uniform grain size. The model reproduces a realistic bed morphology and typical fluctuations in transport rates observed in steep channels. Particle hop distances, from entrainment to deposition, are well fitted by exponential distributions, in agreement with field data. The effect of stochasticity in both the entrainment and the input rate is shown. A stochastic parameterization of the entrainment is essential to create and maintain a realistic channel morphology, while the intermittent transport of grains in CAST shreds the input signal and its stochastic variability. A jamming routine has been added to CAST to simulate the grain–grain and grain–bed interactions that lead to particle jamming and step formation in a step-pool stream. The results show that jamming is effective in generating steps in unsteady conditions. Steps are created during high-flow periods and they survive during low flows only in sediment-starved conditions, in agreement with the jammed-state hypothesis of Church and Zimmermann (2007). Reduced-complexity models like CAST give new insights into the dynamics of complex phenomena such as sediment transport and bedform stability and are a useful complement to fully physically based models to test research hypotheses.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Copernicus
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-sa/3.0/
dc.title
A reduced-complexity model for sediment transport and step-pool morphology
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-ShareAlike 3.0 Unported
ethz.journal.title
Earth Surface Dynamics
ethz.journal.volume
4
en_US
ethz.journal.issue
3
en_US
ethz.pages.start
549
en_US
ethz.pages.end
566
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Step formation in steep mountain streams by blocking and self-organization of coarse grains in transport
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Göttingen
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
140488
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projektförderung in Mathematik, Natur- und Ingenieurwissenschaften (Abteilung II)
ethz.relation.isNewVersionOf
20.500.11850/108531
ethz.date.deposited
2017-06-12T10:07:23Z
ethz.source
ECIT
ethz.identifier.importid
imp5936549748e3a40304
ethz.ecitpid
pub:180939
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-12T20:16:15Z
ethz.rosetta.lastUpdated
2020-02-15T19:05:55Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20reduced-complexity%20model%20for%20sediment%20transport%20and%20step-pool%20morphology&rft.jtitle=Earth%20Surface%20Dynamics&rft.date=2016-07-20&rft.volume=4&rft.issue=3&rft.spage=549&rft.epage=566&rft.au=Saletti,%20Matteo&Molnar,%20Peter&Hassan,%20Marwan%20A.&Burlando,%20Paolo&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record