Show simple item record

dc.contributor.author
Knowles, Antti
dc.contributor.author
Yin, Jun
dc.date.accessioned
2023-10-03T09:57:26Z
dc.date.available
2017-06-12T10:36:50Z
dc.date.available
2017-07-28T10:31:48Z
dc.date.available
2018-04-30T12:44:46Z
dc.date.available
2023-10-03T09:57:26Z
dc.date.issued
2017-10
dc.identifier.issn
0178-8051
dc.identifier.issn
1432-2064
dc.identifier.other
10.1007/s00440-016-0730-4
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/119280
dc.identifier.doi
10.3929/ethz-b-000119280
dc.description.abstract
We develop a new method for deriving local laws for a large class of random matrices. It is applicable to many matrix models built from sums and products of deterministic or independent random matrices. In particular, it may be used to obtain local laws for matrix ensembles that are anisotropic in the sense that their resolvents are well approximated by deterministic matrices that are not multiples of the identity. For definiteness, we present the method for sample covariance matrices of the form , where T is deterministic and X is random with independent entries. We prove that with high probability the resolvent of Q is close to a deterministic matrix, with an optimal error bound and down to optimal spectral scales. As an application, we prove the edge universality of Q by establishing the Tracy–Widom–Airy statistics of the eigenvalues of Q near the soft edges. This result applies in the single-cut and multi-cut cases. Further applications include the distribution of the eigenvectors and an analysis of the outliers and BBP-type phase transitions in finite-rank deformations; they will appear elsewhere. We also apply our method to Wigner matrices whose entries have arbitrary expectation, i.e. we consider W + A where W is a Wigner matrix and A a Hermitian deterministic matrix. We prove the anisotropic local law for W + A and use it to establish edge universality.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Anisotropic local laws for random matrices
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2016-08-06
ethz.journal.title
Probability Theory and Related Fields
ethz.journal.volume
169
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Probab. theory relat. fields
ethz.pages.start
257
en_US
ethz.pages.end
352
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
en_US
ethz.grant
Spectral and eigenvector statistics of large random matrices
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.nebis
000032593
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
144662
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
SNF-Förderungsprofessuren Stufe 2
ethz.relation.isNewVersionOf
handle/20.500.11850/97613
ethz.date.deposited
2017-06-12T10:38:39Z
ethz.source
ECIT
ethz.identifier.importid
imp5936549dc2ceb69732
ethz.ecitpid
pub:181287
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-04-30T12:44:48Z
ethz.rosetta.lastUpdated
2024-02-03T04:20:47Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Anisotropic%20local%20laws%20for%20random%20matrices&rft.jtitle=Probability%20Theory%20and%20Related%20Fields&rft.date=2017-10&rft.volume=169&rft.issue=1&rft.spage=257&rft.epage=352&rft.issn=0178-8051&1432-2064&rft.au=Knowles,%20Antti&Yin,%20Jun&rft.genre=article&rft_id=info:doi/10.1007/s00440-016-0730-4&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record