Show simple item record

dc.contributor.author
Pascher, Nikola
dc.contributor.author
Hennel, Szymon
dc.contributor.author
Mueller, Susanne A.
dc.contributor.author
Fuhrer, Andreas
dc.date.accessioned
2018-12-19T17:57:10Z
dc.date.available
2017-06-12T11:29:44Z
dc.date.available
2018-12-19T17:57:10Z
dc.date.issued
2016-08
dc.identifier.issn
1367-2630
dc.identifier.other
10.1088/1367-2630/18/8/083001
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/119812
dc.identifier.doi
10.3929/ethz-b-000119812
dc.description.abstract
A four-terminal donor quantum dot (QD) is used to characterize potential barriers between degenerately doped nanoscale contacts. The QD is fabricated by hydrogen-resist lithography on Si(001) in combination with n-type doping by phosphine. The four contacts have different separations (d = 9, 12, 16 and 29 nm) to the central 6 nm × 6 nm QD island, leading to different tunnel and capacitive coupling. Cryogenic transport measurements in the Coulomb-blockade (CB) regime are used to characterize these tunnel barriers. We find that field enhancement near the apex of narrow dopant leads is an important effect that influences both barrier breakdown and the magnitude of the tunnel current in the CB transport regime. From CB-spectroscopy measurements, we extract the mutual capacitances between the QD and the four contacts, which scale inversely with the contact separation d. The capacitances are in excellent agreement with numerical values calculated from the pattern geometry in the hydrogen resist. Furthermore, we show that by engineering the source–drain tunnel barriers to be asymmetric, we obtain a much simpler excited-state spectrum of the QD, which can be directly linked to the orbital single-particle spectrum.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Institut of Physics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject
Scaning tunneling microscopy
en_US
dc.subject
Dopant devices
en_US
dc.subject
Quantum transport
en_US
dc.subject
Quantum dots
en_US
dc.subject
Coulomb blockade
en_US
dc.subject
Transport spectroscopy
en_US
dc.title
Tunnel barrier design in donor nanostructures defined by hydrogen-resist lithography
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
dc.date.published
2016-07-28
ethz.journal.title
New Journal of Physics
ethz.journal.volume
18
en_US
ethz.journal.abbreviated
New j. phys.
ethz.pages.start
083001
en_US
ethz.size
8 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
.
en_US
ethz.identifier.scopus
ethz.identifier.nebis
000006230
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2017-06-12T11:36:03Z
ethz.source
ECIT
ethz.identifier.importid
imp593654a8c296275759
ethz.ecitpid
pub:181847
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-12T22:37:56Z
ethz.rosetta.lastUpdated
2018-12-19T17:57:24Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Tunnel%20barrier%20design%20in%20donor%20nanostructures%20defined%20by%20hydrogen-resist%20lithography&rft.jtitle=New%20Journal%20of%20Physics&rft.date=2016-08&rft.volume=18&rft.spage=083001&rft.issn=1367-2630&rft.au=Pascher,%20Nikola&Hennel,%20Szymon&Mueller,%20Susanne%20A.&Fuhrer,%20Andreas&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record