Sparse high order FEM for elliptic sPDEs
dc.contributor.author
Bieri, Marcel
dc.contributor.author
Schwab, Christoph
dc.date.accessioned
2017-06-08T20:30:11Z
dc.date.available
2017-06-08T20:30:11Z
dc.date.issued
2008
dc.identifier.uri
http://hdl.handle.net/20.500.11850/12074
dc.description.abstract
We describe the analysis and the implementation of two Finite Element (FE) algorithms for the deterministic numerical solution of elliptic boundary value problems with stochastic
coefficients. They are based on separation of deterministic and stochastic parts of the input data by a Karhunen-Lo`eve expansion, truncated after M terms. With a change of measure we convert
the problem to a sequence of M-dimensional, parametric deterministic problems. Two sparse, high order polynomial approximations of the random solution’s joint pdf’s, parametrized in the input
data’s Karhunen-Lo`eve expansion coordinates, are analyzed: a sparse stochastic Galerkin FEM (sparse sGFEM) and a sparse stochastic Collocation FEM (sparse sCFEM). A-priori and a-posteriori
error analysis is used to tailor the sparse polynomial approximations of the random solution’s joint pdf’s to the stochastic regularity of the input data. sCFEM and sGFEM yield deterministic
approximations of the random solutions joint pdf’s that converge spectrally in the number of deterministic problems to be solved. Numerical examples with random inputs of small correlation
length in diffusion problems are presented. High order gPC approximations of solutions with stochastic parameter spaces of dimension up to M = 80 are computed on workstations.
dc.language.iso
en
dc.publisher
Seminar für Angewandte Mathematik, ETH
dc.title
Sparse high order FEM for elliptic sPDEs
dc.type
Report
ethz.journal.title
Research Report
ethz.journal.issue
22
ethz.size
45 p.
ethz.notes
Shorted version published: Computer Methods in Applied Mechanics and Engineering, Volume 198, Issues 13-14, March 2009, Pages 1149-1170, NEBIS Systemnr. 000045255, DOI:
10.1016/j.cma.2008.08.019.
ethz.identifier.nebis
000021043
ethz.publication.place
Zürich
ethz.publication.status
published
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
ethz.leitzahl
03217 - Künsch, Hans Rudolf
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
ethz.leitzahl.certified
03217 - Künsch, Hans Rudolf
ethz.identifier.url
ftp://ftp.sam.math.ethz.ch/pub/sam-reports/reports/reports2008/2008-22.pdf
ethz.date.deposited
2017-06-08T20:30:33Z
ethz.source
ECIT
ethz.identifier.importid
imp59364c1070dbd67807
ethz.ecitpid
pub:23344
ethz.eth
yes
ethz.availability
Metadata only
ethz.rosetta.installDate
2017-07-13T11:21:33Z
ethz.rosetta.lastUpdated
2024-02-01T15:07:46Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Sparse%20high%20order%20FEM%20for%20elliptic%20sPDEs&rft.jtitle=Research%20Report&rft.date=2008&rft.issue=22&rft.au=Bieri,%20Marcel&Schwab,%20Christoph&rft.genre=report&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Report [6869]