Optimal control policy tuning and implementation for a hybrid electric race car
dc.contributor.author
Salazar, Mauro
dc.contributor.author
Bussi, Carlo
dc.contributor.author
Grando, Fernando P.
dc.contributor.author
Onder, Christopher H.
dc.contributor.editor
Tunestål, Per
dc.contributor.editor
Eriksson, Lars
dc.date.accessioned
2021-07-28T07:13:02Z
dc.date.available
2017-06-12T13:56:51Z
dc.date.available
2018-09-11T10:33:52Z
dc.date.available
2021-07-28T07:13:02Z
dc.date.issued
2016-07
dc.identifier.issn
2405-8963
dc.identifier.other
10.1016/j.ifacol.2016.08.023
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/121380
dc.description.abstract
The Formula 1 car is a state-of-the-art hybrid electric vehicle. Its power unit is composed by a turbocharged gasoline engine and two electric motor/generator units connected to the traction system and to the turbocharger. Such a powertrain offers an additional degree of freedom and therefore requires an energy management system. This supervisory controller has a significant influence on the vehicle’s fuel consumption and on the achievable lap-time. Therefore, a thorough, systematic optimization of the energy management system is a crucial prerequisite to win a race. The complexity of the system and the strict regulations make the time-optimal energy management problem non-trivial to solve and an effective implementation of its solution on the car difficult to achieve. In Ebbesen, S. et al. (2016) and Salazar, M. et al. (2016) a convex numerical solver was designed and the optimal strategies were derived analytically using a non-smooth version of Pontryagin’s Minimum Principle, respectively. Building on these results, we design a nonlinear program to tune an efficient version of the optimal control policy, in order to precisely match various boundary conditions on the fuel consumption and on the battery usage. This allows a simple and robust implementation of the time-optimal control strategies on the vehicle, and guarantees compatibility with the FIA rules. A simulator is then used to test the obtained feedforward controls on one race lap in Barcelona. The results stand comparison with the optimal solutions obtained with the numerical solver and validate the effectiveness of this strategy.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Optimal Control
en_US
dc.subject
Formula 1
en_US
dc.subject
Hybrid Electric
en_US
dc.subject
Energy Management
en_US
dc.subject
Nonlinear Programming
en_US
dc.subject
Intelligent Vehicles and Robotics Technology in
en_US
dc.subject
Vehicles
en_US
dc.title
Optimal control policy tuning and implementation for a hybrid electric race car
en_US
dc.type
Conference Paper
dc.date.published
2016-08-21
ethz.book.title
8th IFAC Symposium on Advances in Automotive Control, AAC 2016. Proceedings
en_US
ethz.journal.title
IFAC-PapersOnLine
ethz.journal.volume
49
en_US
ethz.journal.issue
11
en_US
ethz.pages.start
147
en_US
ethz.pages.end
152
en_US
ethz.event
8th IFAC Symposium on Advances in Automotive Control (AAC 2016)
en_US
ethz.event.location
Norrköping, Sweden
en_US
ethz.event.date
June 20-23, 2016
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Kidlington
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2017-06-12T14:03:56Z
ethz.source
ECIT
ethz.identifier.importid
imp593654c562bd252944
ethz.ecitpid
pub:183476
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2017-07-24T10:01:40Z
ethz.rosetta.lastUpdated
2022-03-29T10:45:45Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Optimal%20control%20policy%20tuning%20and%20implementation%20for%20a%20hybrid%20electric%20race%20car&rft.jtitle=IFAC-PapersOnLine&rft.date=2016-07&rft.volume=49&rft.issue=11&rft.spage=147&rft.epage=152&rft.issn=2405-8963&rft.au=Salazar,%20Mauro&Bussi,%20Carlo&Grando,%20Fernando%20P.&Onder,%20Christopher%20H.&rft.genre=proceeding&rft_id=info:doi/10.1016/j.ifacol.2016.08.023&rft.btitle=8th%20IFAC%20Symposium%20on%20Advances%20in%20Automotive%20Control,%20AAC%202016.%20Proceedings
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35890]