Promises, Pitfalls, and Basic Guidelines for Applying Machine Learning Classifiers to Psychiatric Imaging Data, with Autism as an Example
Abstract
Most psychiatric disorders are associated with subtle alterations in brain function and are subject to large interindividual differences. Typically, the diagnosis of these disorders requires time-consuming behavioral assessments administered by a multidisciplinary team with extensive experience. While the application of Machine Learning classification methods (ML classifiers) to neuroimaging data has the potential to speed and simplify diagnosis of psychiatric disorders, the methods, assumptions, and analytical steps are currently opaque and not accessible to researchers and clinicians outside the field. In this paper, we describe potential classification pipelines for autism spectrum disorder, as an example of a psychiatric disorder. The analyses are based on resting-state fMRI data derived from a multisite data repository (ABIDE). We compare several popular ML classifiers such as support vector machines, neural networks, and regression approaches, among others. In a tutorial style, written to be equally accessible for researchers and clinicians, we explain the rationale of each classification approach, clarify the underlying assumptions, and discuss possible pitfalls and challenges. We also provide the data as well as the MATLAB code we used to achieve our results. We show that out-of-the-box ML classifiers can yield classification accuracies of about 60–70%. Finally, we discuss how classification accuracy can be further improved, and we mention methodological developments that are needed to pave the way for the use of ML classifiers in clinical practice. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000122746Publication status
publishedExternal links
Journal / series
Frontiers in PsychiatryVolume
Pages / Article No.
Publisher
Frontiers MediaSubject
ABIDE; Classification; Autism spectrum disorder; Psychiatric disorders; Machine learning; RS-fMRIOrganisational unit
03789 - Maathuis, Marloes (ehemalig) / Maathuis, Marloes (former)
03963 - Wenderoth, Nicole / Wenderoth, Nicole
Funding
149561 - Driving the human motor system by somatosensory input (SNF)
Related publications and datasets
Is part of: https://doi.org/10.3929/ethz-b-000271893
More
Show all metadata