Metadata only
Datum
2016-09-13Typ
- Working Paper
ETH Bibliographie
yes
Altmetrics
Abstract
Using a Besov topology on spaces of modelled distributions in the framework of Hairer's regularity structures, we prove the reconstruction theorem on these Besov spaces with negative regularity. The Besov spaces of modelled distributions are shown to be UMD Banach spaces and of martingale type 2. As a consequence, this gives access to a rich stochastic integration theory and to existence and uniqueness results for mild solutions of semilinear stochastic partial differential equations in these spaces of modelled distributions and for distribution-valued SDEs. Furthermore, we provide a Fubini type theorem allowing to interchange the order of stochastic integration and reconstruction. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
arXivSeiten / Artikelnummer
Verlag
Cornell UniversityThema
UMD and M-type 2 Banach Spaces; Regularity structures; Rough path; Stochastic integration in Banach spacesOrganisationseinheit
03845 - Teichmann, Josef / Teichmann, Josef
Zugehörige Publikationen und Daten
Is previous version of: https://doi.org/10.3929/ethz-b-000487435
ETH Bibliographie
yes
Altmetrics