Show simple item record

dc.contributor.author
Rindlisbacher, Tobias
dc.contributor.author
de Forcrand, Philippe
dc.date.accessioned
2019-09-12T13:34:24Z
dc.date.available
2017-06-12T20:29:54Z
dc.date.available
2019-09-12T13:34:24Z
dc.date.issued
2017-05
dc.identifier.issn
0550-3213
dc.identifier.issn
1873-1562
dc.identifier.other
10.1016/j.nuclphysb.2017.02.021
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/129803
dc.identifier.doi
10.3929/ethz-b-000129803
dc.description.abstract
The CPN−1 model in 2D is an interesting toy model for 4D QCD as it possesses confinement, asymptotic freedom and a non-trivial vacuum structure. Due to the lower dimensionality and the absence of fermions, the computational cost for simulating 2D CPN−1 on the lattice is much lower than that for simulating 4D QCD. However, to our knowledge, no efficient algorithm for simulating the lattice CPN−1 model for N>2 has been tested so far, which also works at finite density. To this end we propose a new type of worm algorithm which is appropriate to simulate the lattice CPN−1 model in a dual, flux-variables based representation, in which the introduction of a chemical potential does not give rise to any complications. In addition to the usual worm moves where a defect is just moved from one lattice site to the next, our algorithm additionally allows for worm-type moves in the internal variable space of single links, which accelerates the Monte Carlo evolution. We use our algorithm to compare the two popular CPN−1 lattice actions and exhibit marked differences in their approach to the continuum limit.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Worm malgorithm for the CPN−1 model
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2017-03-07
ethz.journal.title
Nuclear Physics B
ethz.journal.volume
918
en_US
ethz.journal.abbreviated
Nucl. phys., B
ethz.pages.start
178
en_US
ethz.pages.end
219
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.nebis
010842258
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.relation.cites
10.3929/ethz-b-000231782
ethz.date.deposited
2017-06-12T20:30:18Z
ethz.source
ECIT
ethz.identifier.importid
imp5936555c06f7439169
ethz.ecitpid
pub:192792
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-15T04:02:37Z
ethz.rosetta.lastUpdated
2020-02-15T21:36:56Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Worm%20malgorithm%20for%20the%20CPN%E2%88%921%20model&rft.jtitle=Nuclear%20Physics%20B&rft.date=2017-05&rft.volume=918&rft.spage=178&rft.epage=219&rft.issn=0550-3213&1873-1562&rft.au=Rindlisbacher,%20Tobias&de%20Forcrand,%20Philippe&rft.genre=article&rft_id=info:doi/10.1016/j.nuclphysb.2017.02.021&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record