Sensitive detection of rare disease-Associated cell subsets via representation learning
dc.contributor.author
Arvaniti, Eirini
dc.contributor.author
Claassen, Manfred
dc.date.accessioned
2018-09-12T13:03:16Z
dc.date.available
2017-06-12T20:52:08Z
dc.date.available
2018-09-12T13:03:16Z
dc.date.issued
2017
dc.identifier.issn
2041-1723
dc.identifier.other
10.1038/ncomms14825
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/130442
dc.identifier.doi
10.3929/ethz-b-000130442
dc.description.abstract
Rare cell populations play a pivotal role in the initiation and progression of diseases such as cancer. However, the identification of such subpopulations remains a difficult task. This work describes CellCnn, a representation learning approach to detect rare cell subsets associated with disease using high-dimensional single-cell measurements. Using CellCnn, we identify paracrine signalling-, AIDS onset- and rare CMV infection-associated cell subsets in peripheral blood, and extremely rare leukaemic blast populations in minimal residual disease-like situations with frequencies as low as 0.01%.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Sensitive detection of rare disease-Associated cell subsets via representation learning
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2017-04-06
ethz.journal.title
Nature Communications
ethz.journal.volume
8
en_US
ethz.journal.abbreviated
Nat Commun
ethz.pages.start
14825
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.nebis
007044158
ethz.publication.place
London
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02538 - Institut für Molekulare Systembiologie / Institute for Molecular Systems Biology::03984 - Claassen, Manfred (ehemalig) / Claassen, Manfred (former)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02538 - Institut für Molekulare Systembiologie / Institute for Molecular Systems Biology::03984 - Claassen, Manfred (ehemalig) / Claassen, Manfred (former)
ethz.date.deposited
2017-06-12T20:53:11Z
ethz.source
ECIT
ethz.identifier.importid
imp5936556883ab463039
ethz.ecitpid
pub:193448
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-15T21:16:58Z
ethz.rosetta.lastUpdated
2024-02-02T06:04:22Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Sensitive%20detection%20of%20rare%20disease-Associated%20cell%20subsets%20via%20representation%20learning&rft.jtitle=Nature%20Communications&rft.date=2017&rft.volume=8&rft.spage=14825&rft.issn=2041-1723&rft.au=Arvaniti,%20Eirini&Claassen,%20Manfred&rft.genre=article&rft_id=info:doi/10.1038/ncomms14825&
Files in this item
Publication type
-
Journal Article [130410]