Approximate viability using quasi-random samples and a neural network classifier
dc.contributor.author
Djeridane, Badis
dc.contributor.author
Lygeros, John
dc.date.accessioned
2021-07-29T05:25:38Z
dc.date.available
2017-06-08T21:10:10Z
dc.date.available
2018-09-12T10:23:36Z
dc.date.available
2021-07-29T05:25:38Z
dc.date.issued
2008
dc.identifier.isbn
978-3-902661-00-5
en_US
dc.identifier.issn
1474-6670
dc.identifier.other
10.3182/20080706-5-KR-1001.02430
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/13812
dc.description.abstract
We propose a novel approach to the computational investigation of reachability properties for nonlinear control systems. Our goal is to combat the curse of dimensionality, by proposing a mesh-free algorithm to numerically approximate the viability kernel of a given compact set. Our algorithm is based on a non-smooth analysis characterization of the viability kernel. At its heart is a neural network classifier based on Bayesian regularization, which operates on a pseudorandom sample extracted from the state-space (instead of a regular grid). The algorithm was implemented in Matlab and applied successfully to examples with linear and nonlinear dynamics.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
neural network
en_US
dc.subject
viability
en_US
dc.subject
quasi-random technique
en_US
dc.title
Approximate viability using quasi-random samples and a neural network classifier
en_US
dc.type
Conference Paper
dc.date.published
2016-04-25
ethz.book.title
Proceedings of the 17th IFAC World Congress
en_US
ethz.journal.title
IFAC Proceedings Volumes
ethz.journal.volume
41
en_US
ethz.journal.issue
2
en_US
ethz.pages.start
14342
en_US
ethz.pages.end
14347
en_US
ethz.event
17th IFAC World Congress (IFAC 2008)
en_US
ethz.event.location
Seoul, South Korea
en_US
ethz.event.date
July 6-11, 2008
en_US
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::03751 - Lygeros, John / Lygeros, John
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::03751 - Lygeros, John / Lygeros, John
ethz.date.deposited
2017-06-08T21:10:34Z
ethz.source
ECIT
ethz.identifier.importid
imp59364c3207d1742084
ethz.ecitpid
pub:25307
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2017-07-19T01:28:35Z
ethz.rosetta.lastUpdated
2022-03-29T10:47:50Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Approximate%20viability%20using%20quasi-random%20samples%20and%20a%20neural%20network%20classifier&rft.jtitle=IFAC%20Proceedings%20Volumes&rft.date=2008&rft.volume=41&rft.issue=2&rft.spage=14342&rft.epage=14347&rft.issn=1474-6670&rft.au=Djeridane,%20Badis&Lygeros,%20John&rft.isbn=978-3-902661-00-5&rft.genre=proceeding&rft_id=info:doi/10.3182/20080706-5-KR-1001.02430&rft.btitle=Proceedings%20of%20the%2017th%20IFAC%20World%20Congress
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35890]