Knot removal with radial function interpolation
dc.contributor.author
Buhmann, Martin Dietrich
dc.contributor.author
Le Méhauté, Alain
dc.date.accessioned
2022-08-29T11:58:10Z
dc.date.available
2017-06-13T03:23:19Z
dc.date.available
2022-08-29T11:58:10Z
dc.date.issued
1994-09
dc.identifier.uri
http://hdl.handle.net/20.500.11850/145761
dc.identifier.doi
10.3929/ethz-a-004284191
dc.description.abstract
In this note we study interpolants to $n$-variate, real valued functions from radial function spaces, \ie spaces that are spanned by radially symmetric functions $\varphi(\|\cdot - x_{j} \|_2)$ defined on $\R^n$. Here $\| \cdot \|_2$ denotes the Euclidean norm, $\varphi : \R_+ \to \R$ is a given "radial (basis) function" which we take here to be $\varphi (r) = ( r^2 + c^2)^{\beta /2}$, $-n \leq \beta < 0$, and the $\{x_j \} \subset \R^n$ are prescribed "centres", or knots. We analyse the effect of removing a knot from a given interpolant, in order that in applications one can see how many knots can be eliminated from an interpolant so that the interpolant remains within a given tolerance from the original one.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Knot removal with radial function interpolation
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
SAM Research Report
ethz.journal.volume
1994-09
en_US
ethz.size
10 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=164
ethz.date.deposited
2017-06-13T03:23:54Z
ethz.source
ECOL
ethz.identifier.importid
imp59366a4835c2731067
ethz.ecolpid
eth:24695
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-25T17:18:45Z
ethz.rosetta.lastUpdated
2023-02-07T05:49:06Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Knot%20removal%20with%20radial%20function%20interpolation&rft.jtitle=SAM%20Research%20Report&rft.date=1994-09&rft.volume=1994-09&rft.au=Buhmann,%20Martin%20Dietrich&Le%20M%C3%A9haut%C3%A9,%20Alain&rft.genre=report&
Files in this item
Publication type
-
Report [6945]