Show simple item record

dc.contributor.author
Fey, Michael
dc.contributor.author
Jeltsch, Rolf
dc.contributor.author
Morel, Anne-Thérèse
dc.date.accessioned
2022-08-29T13:25:05Z
dc.date.available
2017-06-13T03:23:37Z
dc.date.available
2022-08-29T13:25:05Z
dc.date.issued
1995-11
dc.identifier.uri
http://hdl.handle.net/20.500.11850/145779
dc.identifier.doi
10.3929/ethz-a-004284424
dc.description.abstract
Most commonly used schemes for unsteady multidimensional systems of hyperbolic conservation laws use dimensional splitting. In each coordinate direction a scheme for a one dimensional system is used. Such an approach does not take in account the infinitely many propagation directions which are present in a system in several space dimensions. In 1992 M. Fey introduced what he called the Method of Transport, MoT, for the Euler equations of gas dynamics. It is a finite volume method which uses the transport along characteristics. It does not compute fluxes across cellsides but from one cell to another. These type of schemes can be developed by first rewriting the Euler equation as a sum with integrals of infinitely many transport equations. One of these terms is related to the transport by the velocity while the integrals reflect the acoustic waves. In the numerical scheme the integrals are replaced by finite sums. The method can be modified such as to become a second order scheme. The technique can be applied to the magneto-hydrodynamic equations and the shallow water equation. Numerical examples for the shallow water equation are given.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
nonlinear hyperbolic conservation laws
en_US
dc.subject
multi-dimensional schemes
en_US
dc.subject
method of transport
en_US
dc.subject
second order
en_US
dc.subject
Euler equations of gas dynamics
en_US
dc.subject
shallow water equation
en_US
dc.subject
magneto-hydrodynamic equations
en_US
dc.title
Multidimensional schemes for nonlinear systems of hyperbolic conservation laws
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
SAM Research Report
ethz.journal.volume
1995-11
en_US
ethz.size
20 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=178
ethz.date.deposited
2017-06-13T03:23:54Z
ethz.source
ECOL
ethz.identifier.importid
imp59366a48ae7a652940
ethz.ecolpid
eth:24713
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-18T22:49:30Z
ethz.rosetta.lastUpdated
2023-02-07T05:49:18Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Multidimensional%20schemes%20for%20nonlinear%20systems%20of%20hyperbolic%20conservation%20laws&rft.jtitle=SAM%20Research%20Report&rft.date=1995-11&rft.volume=1995-11&rft.au=Fey,%20Michael&Jeltsch,%20Rolf&Morel,%20Anne-Th%C3%A9r%C3%A8se&rft.genre=report&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record