Variations of Zhang's Lanczos-Type Product Method
dc.contributor.author
Gutknecht, Martin
dc.contributor.author
Röllin, Stefan
dc.date.accessioned
2022-08-31T06:59:57Z
dc.date.available
2017-06-13T03:28:02Z
dc.date.available
2022-08-31T06:59:57Z
dc.date.issued
2000-12
dc.identifier.uri
http://hdl.handle.net/20.500.11850/145906
dc.identifier.doi
10.3929/ethz-a-004288984
dc.description.abstract
Among the Lanczos-type product methods, which are characterized by residual polynomials $p_n t_n$ that are the product of the Lanczos polynomial $p_n$ and another polynomial $t_n$ of exact degree $n$ with $t_n(0) = 1$, Zhang's algorithm \GPBICG\ has the feature that the polynomials $t_n$ are implicitly built up by a pair of coupled two-term recurrences whose coefficients are chosen so that the new residual is minimized in a 2-dimensional space. There are several ways to achieve this. We discuss here alternative algorithms that are mathematically equivalent (that is, produce in exact arithmetic the same results). The goal is to find one where the ultimate accuracy of the iterates $x_n$ is guaranteed to be high and the cost is at most slightly increased.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Krylov space method
en_US
dc.subject
biconjugate gradients
en_US
dc.subject
Lanczos-type product method
en_US
dc.subject
BiCGxMR2
en_US
dc.subject
GPBi-CG
en_US
dc.title
Variations of Zhang's Lanczos-Type Product Method
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
SAM Research Report
ethz.journal.volume
2000-17
en_US
ethz.size
19 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.notes
Dedicated to the memory of Rüdiger Weiss.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=276
ethz.date.deposited
2017-06-13T03:29:36Z
ethz.source
ECOL
ethz.identifier.importid
imp59366a4c1208866895
ethz.ecolpid
eth:24840
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-18T22:41:41Z
ethz.rosetta.lastUpdated
2023-02-07T05:52:27Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Variations%20of%20Zhang's%20Lanczos-Type%20Product%20Method&rft.jtitle=SAM%20Research%20Report&rft.date=2000-12&rft.volume=2000-17&rft.au=Gutknecht,%20Martin&R%C3%B6llin,%20Stefan&rft.genre=report&
Files in this item
Publication type
-
Report [6941]