Fully Discrete Multiscale Galerkin BEM
dc.contributor.author
von Petersdorff, Tobias
dc.contributor.author
Schwab, Christoph
dc.date.accessioned
2022-08-29T12:12:44Z
dc.date.available
2017-06-13T03:28:16Z
dc.date.available
2022-08-29T12:12:44Z
dc.date.issued
1995-09
dc.identifier.uri
http://hdl.handle.net/20.500.11850/145919
dc.identifier.doi
10.3929/ethz-a-004289236
dc.description.abstract
We analyze multiscale Galerkin methods for strongly elliptic boundary integral equations of order zero on closed surfaces in $R^3$. Piecewise polynomial, discontinuous multiwavelet bases of any polynomial degree are constructed explicitly. We show that optimal convergence rates in the boundary energy norm and in certain negative norms can be achieved with "compressed" stiffness matrices containing $O(N({\log N})^2)$ nonvanishing entries where $N$ denotes the number of degrees of freedom on the boundary manifold. We analyze a quadrature scheme giving rise to fully discrete methods. We show that the fully discrete scheme preserves the asymptotic accuracy of the scheme and that its overall computational complexity is $O(N({\log N})^4)$ kernel evaluations. The implications of the results for the numerical solution of elliptic boundary value problems in or exterior to bounded, three-dimensional domains are discussed.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Fully Discrete Multiscale Galerkin BEM
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
SAM Research Report
ethz.journal.volume
1995-08
en_US
ethz.size
49 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=176
ethz.date.deposited
2017-06-13T03:29:36Z
ethz.source
ECOL
ethz.identifier.importid
imp59366a4c63d1315402
ethz.ecolpid
eth:24853
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-18T22:41:28Z
ethz.rosetta.lastUpdated
2024-02-02T17:57:24Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Fully%20Discrete%20Multiscale%20Galerkin%20BEM&rft.jtitle=SAM%20Research%20Report&rft.date=1995-09&rft.volume=1995-08&rft.au=von%20Petersdorff,%20Tobias&Schwab,%20Christoph&rft.genre=report&
Files in this item
Publication type
-
Report [6866]