On Convergence and Implementation of Minimal Residual KrylovSubspace Methods for Unsymmetric Linear Systems
dc.contributor.author
Liesen, Jörg
dc.contributor.author
Rozložník, Miroslav
dc.contributor.author
Strakoš, Zdeněk
dc.date.accessioned
2022-08-31T07:28:09Z
dc.date.available
2017-06-13T03:37:04Z
dc.date.available
2022-08-31T07:28:09Z
dc.date.issued
2000-10
dc.identifier.uri
http://hdl.handle.net/20.500.11850/146223
dc.identifier.doi
10.3929/ethz-a-004330012
dc.description.abstract
Consider linear algebraic systems $Ax = b$ with a general unsymmetric nonsingular matrix A. We study Krylov subspace methods for solving such systems that minimize the norm of the residual at each step. Such methods are often formulated in terms of a sequence of least squares problems of increasing dimension. Therefore we begin with an overdetermined least squares problem $Bu \approx c$ and present several basic identities and bounds for the least squares residual $r = c- By$.Then we apply these results to minimal residual Krylov subspace methods, and formulate several theoretical consequences about their convergence. We consider possible implementations, in particular various forms of the GMRES method [26], and discuss their numerical properties. Finally, we illustrate our findings by numerical examples and draw conclusions.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
linear systems
en_US
dc.subject
least squares problems
en_US
dc.subject
Krylov subspace methods
en_US
dc.subject
minimal residual methods
en_US
dc.subject
GMRES
en_US
dc.subject
convergence
en_US
dc.subject
rounding errors
en_US
dc.title
On Convergence and Implementation of Minimal Residual KrylovSubspace Methods for Unsymmetric Linear Systems
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
SAM Research Report
ethz.journal.volume
2000-11
en_US
ethz.size
29 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=270
ethz.date.deposited
2017-06-13T03:38:02Z
ethz.source
ECOL
ethz.identifier.importid
imp59366a52aa81923264
ethz.ecolpid
eth:25169
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-18T21:36:14Z
ethz.rosetta.lastUpdated
2023-02-07T05:52:36Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=On%20Convergence%20and%20Implementation%20of%20Minimal%20Residual%20KrylovSubspace%20Methods%20for%20Unsymmetric%20Linear%20Systems&rft.jtitle=SAM%20Research%20Report&rft.date=2000-10&rft.volume=2000-11&rft.au=Liesen,%20J%C3%B6rg&Rozlo%C5%BEn%C3%ADk,%20Miroslav&Strako%C5%A1,%20Zden%C4%9Bk&rft.genre=report&
Files in this item
Publication type
-
Report [6869]