Coercive Combined Field Integral Equations
dc.contributor.author
Hiptmair, Ralf
dc.contributor.author
Buffa, Annalisa
dc.date.accessioned
2022-08-31T08:09:43Z
dc.date.available
2017-06-13T04:17:17Z
dc.date.available
2022-08-31T08:09:43Z
dc.date.issued
2003-08
dc.identifier.uri
http://hdl.handle.net/20.500.11850/147513
dc.identifier.doi
10.3929/ethz-a-004570528
dc.description.abstract
Many boundary integral equations for exterior Dirichlet- and Neumann boundary value problems for the Helmholtz equation suffer from a notorious instability for wave numbers related to interior resonances. The so-called combined field integral equations are not affected. However, if the boundary $\Gamma$ is not smooth, the traditional combined field integral equations for the exterior Dirichlet problem do not give rise to an $L^2 ({\Gamma})$-coercive variational formulation. This foils attempts to establish asymptotic quasi-optimality of discrete solutions obtained through conforming Galerkin boundary element schemes. This article presents new combined field integral equations on two-dimensional closed surfaces that possess coercivity in canonical trace spaces. The main idea is to use suitable regularizing operators in the framework of both direct and indirect methods. This permits us to apply the classical convergence theory of conforming Galerkin methods.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Acoustic scattering
en_US
dc.subject
indirect boundary integral equations
en_US
dc.subject
combined field integral equations (CFIE)
en_US
dc.subject
coercivity
en_US
dc.subject
boundary element methods
en_US
dc.subject
Galerkin schemes
en_US
dc.title
Coercive Combined Field Integral Equations
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
SAM Research Report
ethz.journal.volume
2003-08
en_US
ethz.size
25 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=320
ethz.date.deposited
2017-06-13T04:18:30Z
ethz.source
ECOL
ethz.identifier.importid
imp59366a6f2770838722
ethz.ecolpid
eth:26545
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-15T18:11:04Z
ethz.rosetta.lastUpdated
2023-02-07T05:52:48Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Coercive%20Combined%20Field%20Integral%20Equations&rft.jtitle=SAM%20Research%20Report&rft.date=2003-08&rft.volume=2003-08&rft.au=Hiptmair,%20Ralf&Buffa,%20Annalisa&rft.genre=report&
Files in this item
Publication type
-
Report [6869]