Density estimation with distribution element trees
dc.contributor.author
Meyer, Daniel W.
dc.date.accessioned
2023-09-18T12:14:38Z
dc.date.available
2017-07-04T12:22:31Z
dc.date.available
2017-07-04T12:50:06Z
dc.date.available
2017-07-04T12:55:44Z
dc.date.available
2017-07-10T10:32:42Z
dc.date.available
2018-06-04T09:17:51Z
dc.date.available
2023-09-18T12:14:38Z
dc.date.issued
2018-05
dc.identifier.issn
0960-3174
dc.identifier.issn
1573-1375
dc.identifier.other
10.1007/s11222-017-9751-9
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/168068
dc.identifier.doi
10.3929/ethz-b-000168068
dc.description.abstract
The estimation of probability densities based on available data is a central task in many statistical applications. Especially in the case of large ensembles with many samples or high-dimensional sample spaces, computationally efficient methods are needed. We propose a new method that is based on a decomposition of the unknown distribution in terms of so-called distribution elements (DEs). These elements enable an adaptive and hierarchical discretization of the sample space with small or large elements in regions with smoothly or highly variable densities, respectively. The novel refinement strategy that we propose is based on statistical goodness-of-fit and pairwise (as an approximation to mutual) independence tests that evaluate the local approximation of the distribution in terms of DEs. The capabilities of our new method are inspected based on several examples of different dimensionality and successfully compared with other state-of-the-art density estimators.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Nonparametric density estimation
en_US
dc.subject
Adaptive histogram
en_US
dc.subject
Kernel density estimation
en_US
dc.subject
Adaptive binning
en_US
dc.subject
Polynomial histogram
en_US
dc.subject
Curse of dimensionality
en_US
dc.subject
High dimensional
en_US
dc.subject
Big data
en_US
dc.subject
Pólya tree
en_US
dc.subject
Density estimation tree
en_US
dc.title
Density estimation with distribution element trees
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2017-05-16
ethz.journal.title
Statistics and Computing
ethz.journal.volume
28
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Stat. comput.
ethz.pages.start
609
en_US
ethz.pages.end
632
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.notes
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics::03644 - Jenny, Patrick / Jenny, Patrick
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics::03644 - Jenny, Patrick / Jenny, Patrick
en_US
ethz.date.deposited
2017-07-04T12:22:31Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-06-04T09:17:53Z
ethz.rosetta.lastUpdated
2024-02-03T03:49:53Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Density%20estimation%20with%20distribution%20element%20trees&rft.jtitle=Statistics%20and%20Computing&rft.date=2018-05&rft.volume=28&rft.issue=3&rft.spage=609&rft.epage=632&rft.issn=0960-3174&1573-1375&rft.au=Meyer,%20Daniel%20W.&rft.genre=article&rft_id=info:doi/10.1007/s11222-017-9751-9&
Files in this item
Publication type
-
Journal Article [130376]