Maximally extended $\boldsymbol {\mathfrak{sl}(2\vert 2)}$ , q-deformed $\boldsymbol{\mathfrak{d}{(2, 1;\epsilon)}}$ and 3D kappa-Poincaré
Open access
Date
2017-07Type
- Journal Article
Abstract
We show that the maximal extension $ \newcommand{\Complex}{\mathbb{C}} \newcommand{\alg}[1]{\mathfrak{#1}} \alg{sl}(2)\ltimes\alg{psl}(2\vert 2)\ltimes \Complex^3$ of the $ \newcommand{\alg}[1]{\mathfrak{#1}} \alg{sl}(2\vert 2)$ superalgebra can be obtained as a contraction limit of the semi-simple superalgebra $ \newcommand{\alg}[1]{\mathfrak{#1}} \newcommand{\directsum}{\times} \alg{d}(2, 1;\epsilon) \directsum \alg{sl}(2)$ . We reproduce earlier results on the corresponding q-deformed Hopf algebra and its universal R-matrix by means of contraction. We make the curious observation that the above algebra is related to kappa-Poincaré symmetry. When dropping the graded part $ \newcommand{\alg}[1]{\mathfrak{#1}} \alg{psl}(2\vert 2)$ we find a novel one-parameter deformation of the 3D kappa-Poincaré algebra. Our construction also provides a concise exact expression for its universal R-matrix. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000173578Publication status
publishedJournal / series
Journal of Physics A: Mathematical and TheoreticalVolume
Pages / Article No.
Publisher
IOP PublishingSubject
quantum algebra; kappa-Poincaré; integrable models; universal R-matrix; exceptional superalgebra; algebraic contractionOrganisational unit
03896 - Beisert, Niklas / Beisert, Niklas
Funding
615203 - Extended Symmetries in Gauge and Gravity Theories (EC)
More
Show all metadata