Show simple item record

dc.contributor.author
Zachariah, Zita
dc.contributor.supervisor
Heuberger, Manfred P.
dc.contributor.supervisor
Espinosa-Marzal, Rosa M.
dc.contributor.supervisor
Christenson, Hugo
dc.contributor.supervisor
Spencer, Nicolas D.
dc.contributor.supervisor
Fiebig, Manfred
dc.date.accessioned
2017-08-22T14:30:15Z
dc.date.available
2017-08-22T14:13:04Z
dc.date.available
2017-08-22T14:27:13Z
dc.date.available
2017-08-22T14:30:15Z
dc.date.issued
2017
dc.identifier.uri
http://hdl.handle.net/20.500.11850/179834
dc.identifier.doi
10.3929/ethz-b-000179834
dc.description.abstract
Electrical double layers, comprising of a surface charge and excess ions in solution, are of critical importance in applications such as colloid science, energy storage devices and water desalination. When two charged surfaces and their accompanying double layers approach each other, the double layers first begin to overlap and finally collapse under confinement. In nanofluidic devices or nanopores where double layers are in such a confined state, transport phenomena and physicochemical reactions depend on the composition and properties of the collapsed electrical double layer. The classical DLVO theory fails to predict the interaction forces accurately at nanometer separations or high ionic concentrations since it disregards, among other things, confinement induced effects such as ion dehydration. This work aims to address these open questions, namely the interaction between surfaces at nanometer separations and the changes in the interfacial adhesion due to the presence of counterions. The collective transitions between structural elements in nanometer-thick monovalent aqueous electrolytic films as well as interfacial adhesion were studied via direct force measurements between atomically smooth mica surfaces using the enhanced sensitivity of film thickness measurement. Changing concentration or pH provides the means to shift chemical potentials and interfacial populations, and therefore also to shift the relative stability of structural elements and gain valuable insights into the structural diversity at the interface.
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
hydrated ions
en_US
dc.subject
nano-confinement
en_US
dc.subject
Electrical double layer
en_US
dc.title
Molecular insights into nanoconfined electrical double layers
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2017-08-22
ethz.size
151 p.
en_US
ethz.code.ddc
5 - Science::540 - Chemistry
en_US
ethz.identifier.diss
24079
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::02646 - Institut für Polymere / Institute of Polymers
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials
en_US
ethz.tag
Surface Chemistry;
en_US
ethz.date.deposited
2017-08-22T14:13:06Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-08-22T14:27:26Z
ethz.rosetta.lastUpdated
2018-11-05T17:31:35Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Molecular%20insights%20into%20nanoconfined%20electrical%20double%20layers&rft.date=2017&rft.au=Zachariah,%20Zita&rft.genre=unknown&rft.btitle=Molecular%20insights%20into%20nanoconfined%20electrical%20double%20layers
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record