Show simple item record

dc.contributor.author
Egan, Paul F.
dc.contributor.author
Gonella, Veronica C.
dc.contributor.author
Engensperger, Max
dc.contributor.author
Ferguson, Stephen J.
dc.contributor.author
Shea, Kristina
dc.date.accessioned
2017-08-25T11:18:57Z
dc.date.available
2017-08-23T08:18:06Z
dc.date.available
2017-08-25T11:18:57Z
dc.date.issued
2017-08-10
dc.identifier.issn
1932-6203
dc.identifier.other
10.1371/journal.pone.0182902
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/179940
dc.identifier.doi
10.3929/ethz-b-000179940
dc.description.abstract
Tissue scaffolds provide structural support while facilitating tissue growth, but are challenging to design due to diverse property trade-offs. Here, a computational approach was developed for modeling scaffolds with lattice structures of eight different topologies and assessing properties relevant to bone tissue engineering applications. Evaluated properties include porosity, pore size, surface-volume ratio, elastic modulus, shear modulus, and permeability. Lattice topologies were generated by patterning beam-based unit cells, with design parameters for beam diameter and unit cell length. Finite element simulations were conducted for each topology and quantified how elastic modulus and shear modulus scale with porosity, and how permeability scales with porosity cubed over surface-volume ratio squared. Lattices were compared with controlled properties related to porosity and pore size. Relative comparisons suggest that lattice topology leads to specializations in achievable properties. For instance, Cube topologies tend to have high elastic and low shear moduli while Octet topologies have high shear moduli and surface-volume ratios but low permeability. The developed method was utilized to analyze property trade-offs as beam diameter was altered for a given topology, and used to prototype a 3D printed lattice embedded in an interbody cage for spinal fusion treatments. Findings provide a basis for modeling and understanding relative differences among beam-based lattices designed to facilitate bone tissue growth.
en_US
dc.language.iso
en
en_US
dc.publisher
Public Library of Science (PLoS)
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Computationally designed lattices with tuned properties for tissue engineering using 3D printing
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
PLoS ONE
ethz.journal.volume
12
en_US
ethz.journal.issue
8
en_US
ethz.journal.abbreviated
PLoS ONE
ethz.pages.start
e0182902
en_US
ethz.size
20 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.code.ddc
0 - Computer science, information & general works::000 - Generalities, science
en_US
ethz.code.ddc
6 - Technology, medicine and applied sciences::610 - Medical sciences, medicine
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
San Francisco, CA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Departement Maschinenbau und Verfahrenstechnik / Department of Mechanical and Process Engineering::02665 - Institut für Design, Materialien und Fabrikation::03954 - Shea, Kristina
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Departement Gesundheitswissenschaften und Technologie / Department of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03915 - Ferguson, Stephen
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Departement Gesundheitswissenschaften und Technologie / Department of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03915 - Ferguson, Stephen
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Departement Maschinenbau und Verfahrenstechnik / Department of Mechanical and Process Engineering::02665 - Institut für Design, Materialien und Fabrikation::03954 - Shea, Kristina
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Departement Gesundheitswissenschaften und Technologie / Department of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03915 - Ferguson, Stephen
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Departement Gesundheitswissenschaften und Technologie / Department of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03915 - Ferguson, Stephen
ethz.date.deposited
2017-08-23T08:18:12Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-08-25T11:19:11Z
ethz.rosetta.lastUpdated
2018-02-01T08:56:21Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Computationally%20designed%20lattices%20with%20tuned%20properties%20for%20tissue%20engineering%20using%203D%20printing&rft.jtitle=PLoS%20ONE&rft.date=2017-08-10&rft.volume=12&rft.issue=8&rft.spage=e0182902&rft.issn=1932-6203&rft.au=Egan,%20Paul%20F.&Gonella,%20Veronica%20C.&Engensperger,%20Max&Ferguson,%20Stephen%20J.&Shea,%20Kristina&rft.genre=article&rft_id=info:doi/10.1371/journal.pone.0182902
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record