Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots
dc.contributor.author
Winkler, Alexander
dc.contributor.author
Havoutis, Ioannis
dc.contributor.author
Bazeille, Stephane
dc.contributor.author
Ortiz, Jesus
dc.contributor.author
Focchi, Michele
dc.contributor.author
Dillmann, Rüdiger
dc.contributor.author
Caldwell, Darwin
dc.contributor.author
Semini, Claudio
dc.date.accessioned
2020-10-01T09:33:11Z
dc.date.available
2017-09-18T15:01:30Z
dc.date.available
2017-09-19T08:34:02Z
dc.date.available
2017-09-19T08:39:25Z
dc.date.available
2020-10-01T09:33:11Z
dc.date.issued
2014
dc.identifier.isbn
978-1-4799-3685-4
en_US
dc.identifier.other
10.1109/icra.2014.6907815
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/185427
dc.identifier.doi
10.3929/ethz-b-000185427
dc.description.abstract
We present a framework for quadrupedal locomotion over highly challenging terrain where the choice of appropriate footholds is crucial for the success of the behaviour. We use a path planning approach which shares many similarities with the results of the DARPA Learning Locomotion challenge and extend it to allow more flexibility and increased robustness. During execution we incorporate an on-line force-based foothold adaptation mechanism that updates the planned motion according to the perceived state of the environment. This way we exploit the active compliance of our system to smoothly interact with the environment, even when this is inaccurately perceived or dynamically changing, and update the planned path on-the-fly. In tandem we use a virtual model controller that provides the feed-forward torques that allow increased accuracy together with highly compliant behaviour on an otherwise naturally very stiff robotic system. We leverage the full set of benefits that a high performance torque controlled quadruped robot can provide and demonstrate the flexibility and robustness of our approach on a set of experimental trials of increasing difficulty.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Legged robots
en_US
dc.subject
legged locomotion
en_US
dc.subject
Motion and Path Planning
en_US
dc.title
Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2014-09-29
ethz.book.title
2014 IEEE International Conference on Robotics and Automation (ICRA)
en_US
ethz.pages.start
6476
en_US
ethz.pages.end
6482
en_US
ethz.size
7 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
IEEE International Conference on Robotics and Automation (ICRA 2014)
en_US
ethz.event.location
Hong Kong, China
en_US
ethz.event.date
May 31 - June 7, 2014
en_US
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03965 - Buchli, Jonas (SNF-Professur) (ehem.) / Buchli, Jonas (SNF-Professur) (former)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03965 - Buchli, Jonas (SNF-Professur) (ehem.) / Buchli, Jonas (SNF-Professur) (former)
en_US
ethz.date.deposited
2017-09-18T15:01:31Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-09-19T08:34:08Z
ethz.rosetta.lastUpdated
2024-02-02T12:12:29Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Path%20planning%20with%20force-based%20foothold%20adaptation%20and%20virtual%20model%20control%20for%20torque%20controlled%20quadruped%20robots&rft.date=2014&rft.spage=6476&rft.epage=6482&rft.au=Winkler,%20Alexander&Havoutis,%20Ioannis&Bazeille,%20Stephane&Ortiz,%20Jesus&Focchi,%20Michele&rft.isbn=978-1-4799-3685-4&rft.genre=proceeding&rft_id=info:doi/10.1109/icra.2014.6907815&rft.btitle=2014%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)
Files in this item
Publication type
-
Conference Paper [36606]