From crossing-free graphs on wheel sets to embracing simplices and polytopes with few vertices
Open access
Datum
2017Typ
- Conference Paper
Abstract
A set P = H cup {w} of n+1 points in the plane is called a wheel set if all points but w are extreme. We show that for the purpose of counting crossing-free geometric graphs on P, it suffices to know the so-called frequency vector of P. While there are roughly 2^n distinct order types that correspond to wheel sets, the number of frequency vectors is only about 2^{n/2}. We give simple formulas in terms of the frequency vector for the number of crossing-free spanning cycles, matchings, w-embracing triangles, and many more. Based on these formulas, the corresponding numbers of graphs can be computed efficiently. Also in higher dimensions, wheel sets turn out to be a suitable model to approach the problem of computing the simplicial depth of a point w in a set H, i.e., the number of simplices spanned by H that contain w. While the concept of frequency vectors does not generalize easily, we show how to apply similar methods in higher dimensions. The result is an O(n^{d-1}) time algorithm for computing the simplicial depth of a point w in a set H of n d-dimensional points, improving on the previously best bound of O(n^d log n). Configurations equivalent to wheel sets have already been used by Perles for counting the faces of high-dimensional polytopes with few vertices via the Gale dual. Based on that we can compute the number of facets of the convex hull of n=d+k points in general position in R^d in time O(n^max(omega,k-2)) where omega = 2.373, even though the asymptotic number of facets may be as large as n^k. Mehr anzeigen
Persistenter Link
https://doi.org/10.3929/ethz-b-000192198Publikationsstatus
publishedExterne Links
Buchtitel
33rd International Symposium on Computational Geometry (SoCG 2017)Zeitschrift / Serie
Leibniz International Proceedings in Informatics (LIPIcs)Band
Seiten / Artikelnummer
Verlag
Schloss Dagstuhl - Leibniz-Zentrum für InformatikKonferenz
Thema
geometric graph; wheel set; simplicial depth; Gale transform; polytopeOrganisationseinheit
03457 - Welzl, Emo (emeritus) / Welzl, Emo (emeritus)