From crossing-free graphs on wheel sets to embracing simplices and polytopes with few vertices
dc.contributor.author
Pilz, Alexander
dc.contributor.author
Welzl, Emo
dc.contributor.author
Wettstein, Manuel
dc.contributor.editor
Aronov, Boris
dc.contributor.editor
Katz, Mark N.
dc.date.accessioned
2017-12-05T14:09:39Z
dc.date.available
2017-10-06T04:42:42Z
dc.date.available
2017-10-17T11:54:02Z
dc.date.available
2017-12-05T14:09:39Z
dc.date.issued
2017
dc.identifier.isbn
978-3-95977-038-5
en_US
dc.identifier.issn
1868-8969
dc.identifier.other
10.4230/LIPIcs.SoCG.2017.54
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/192198
dc.identifier.doi
10.3929/ethz-b-000192198
dc.description.abstract
A set P = H cup {w} of n+1 points in the plane is called a wheel set if all points but w are extreme. We show that for the purpose of counting crossing-free geometric graphs on P, it suffices to know the so-called frequency vector of P. While there are roughly 2^n distinct order types that correspond to wheel sets, the number of frequency vectors is only about 2^{n/2}. We give simple formulas in terms of the frequency vector for the number of crossing-free spanning cycles, matchings, w-embracing triangles, and many more. Based on these formulas, the corresponding numbers of graphs can be computed efficiently. Also in higher dimensions, wheel sets turn out to be a suitable model to approach the problem of computing the simplicial depth of a point w in a set H, i.e., the number of simplices spanned by H that contain w. While the concept of frequency vectors does not generalize easily, we show how to apply similar methods in higher dimensions. The result is an O(n^{d-1}) time algorithm for computing the simplicial depth of a point w in a set H of n d-dimensional points, improving on the previously best bound of O(n^d log n). Configurations equivalent to wheel sets have already been used by Perles for counting the faces of high-dimensional polytopes with few vertices via the Gale dual. Based on that we can compute the number of facets of the convex hull of n=d+k points in general position in R^d in time O(n^max(omega,k-2)) where omega = 2.373, even though the asymptotic number of facets may be as large as n^k.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject
geometric graph
en_US
dc.subject
wheel set
en_US
dc.subject
simplicial depth
en_US
dc.subject
Gale transform
en_US
dc.subject
polytope
en_US
dc.title
From crossing-free graphs on wheel sets to embracing simplices and polytopes with few vertices
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 3.0 Unported
ethz.book.title
33rd International Symposium on Computational Geometry (SoCG 2017)
en_US
ethz.journal.title
Leibniz International Proceedings in Informatics (LIPIcs)
ethz.journal.volume
77
en_US
ethz.journal.abbreviated
Leibniz Int. Proc. Inform.
ethz.pages.start
54
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
33rd International Symposium on Computational Geometry (SoCG 2017)
en_US
ethz.event.location
Brisbane, Australia
en_US
ethz.event.date
July 4-7, 2017
en_US
ethz.identifier.scopus
ethz.publication.place
Dagstuhl
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::03672 - Steger, Angelika / Steger, Angelika::03457 - Welzl, Emo (emeritus) / Welzl, Emo (emeritus)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::03672 - Steger, Angelika / Steger, Angelika::03457 - Welzl, Emo (emeritus) / Welzl, Emo (emeritus)
ethz.date.deposited
2017-10-06T04:42:48Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-10-17T11:54:04Z
ethz.rosetta.lastUpdated
2024-02-02T03:24:05Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=From%20crossing-free%20graphs%20on%20wheel%20sets%20to%20embracing%20simplices%20and%20polytopes%20with%20few%20vertices&rft.jtitle=Leibniz%20International%20Proceedings%20in%20Informatics%20(LIPIcs)&rft.date=2017&rft.volume=77&rft.spage=54&rft.issn=1868-8969&rft.au=Pilz,%20Alexander&Welzl,%20Emo&Wettstein,%20Manuel&rft.isbn=978-3-95977-038-5&rft.genre=proceeding&rft_id=info:doi/10.4230/LIPIcs.SoCG.2017.54&rft.btitle=33rd%20International%20Symposium%20on%20Computational%20Geometry%20(SoCG%202017)
Files in this item
Publication type
-
Conference Paper [35773]