Search
Results
-
hp-DG-QTT solution of high-dimensional degenerate diffusion equations
(2012)SAM Research ReportWe consider the discretization of degenerate, time-inhomogeneous Fokker-Planck equations for diffusion problems in high-dimensional domains. Well-posedness of the problem in time-weighted Bochner spaces is established. Analytic regularity of the time-dependence of the solution in countably normed, weighted Sobolev spaces is established. Time discretization by the hp-discontinuous Galerkin method is shown to converge exponentially. The ...Report -
hp-DG-QTT solution of high-dimensional degenerate diffusion equations
(2012)SAM Research ReportWe consider the discretization of degenerate, time-inhomogeneous Fokker-Planck equations for diffusion problems in high-dimensional domains. Well-posedness of the problem in time-weighted Bochner spaces is established. Analytic regularity of the time-dependence of the solution in countably normed, weighted Sobolev spaces is established. Time discretization by the hp-discontinuous We consider the discretization of degenerate, time-inhomogeneous ...Report -
Low-rank tensor structure of linear diffusion operators in the TT and QTT formats
(2012)SAM Research ReportWe consider a class of multilevel matrices, which arise from the discretization of linear diffusion operators in a $d$-dimensional hypercube. Under certain assumptions on the structure of the diffusion tensor (motivated by financial models), we derive an explicit representation of such a matrix in the recently introduced Tensor Train (TT) format with the $TT$ ranks bounded from above by $2 + \lfloor \frac{d}{2}\rfloor$. We also show that ...Report