Search
Results
-
Long Expressive Memory for Sequence Modeling
(2021)SAM Research ReportWe propose a novel method called Long Expressive Memory (LEM) for learning long-term sequential dependencies. LEM is gradient-based, it can efficiently process sequential tasks with very long-term dependencies, and it is sufficiently expressive to be able to learn complicated input-output maps. To derive LEM, we consider a system of multiscale ordinary differential equations, as well as a suitable time-discretization of this system. For ...Report -
Graph-Coupled Oscillator Networks
(2022)SAM Research ReportWe propose Graph-Coupled Oscillator Networks (GraphCON), a novel framework for deep learning on graphs. It is based on discretizations of a second-order system of ordinary differential equations (ODEs), which model a network of nonlinear forced and damped oscillators, coupled via the adjacency structure of the underlying graph. The flexibility of our framework permits any basic GNN layer (e.g. convolutional or attentional) as the coupling ...Report -
Multi-Scale Message Passing Neural PDE Solvers
(2023)SAM Research ReportWe propose a novel multi-scale message passing neural network algorithm for learning the solutions of time-dependent PDEs. Our algorithm possesses both temporal and spatial multi-scale resolution features by incorporating multi-scale sequence models and graph gating modules in the encoder and processor, respectively. Benchmark numerical experiments are presented to demonstrate that the proposed algorithm outperforms baselines, particularly ...Report -
A Survey on Oversmoothing in Graph Neural Networks
(2023)SAM Research ReportNode features of graph neural networks (GNNs) tend to become more similar with the increase of the network depth. This effect is known as over-smoothing, which we axiomatically define as the exponential convergence of suitable similarity measures on the node features. Our definition unifies previous approaches and gives rise to new quantitative measures of over-smoothing. Moreover, we empirically demonstrate this behavior for several ...Report -
UnICORNN: A recurrent model for learning very long time dependencies
(2021)SAM Research ReportThe design of recurrent neural networks (RNNs) to accurately process sequential inputs with long-time dependencies is very challenging on account of the exploding and vanishing gradient problem. To overcome this, we propose a novel RNN architecture which is based on a structure preserving discretization of a Hamiltonian system of second-order ordinary differential equations that models networks of oscillators. The resulting RNN is fast, ...Report -
Higher-order Quasi-Monte Carlo Training of Deep Neural Networks
(2020)SAM Research ReportWe present a novel algorithmic approach and an error analysis leveraging Quasi-Monte Carlo points for training deep neural network (DNN) surrogates of Data-to-Observable (DtO) maps in engineering design. Our analysis reveals higher-order consistent, deterministic choices of training points in the input data space for deep and shallow Neural Networks with holomorphic activation functions such as tanh. These novel training points are proved ...Report -
Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies
(2020)SAM Research ReportCircuits of biological neurons, such as in the functional parts of the brain can be modeled as networks of coupled oscillators. Inspired by the ability of these systems to express a rich set of outputs while keeping (gradients of) state variables bounded, we propose a novel architecture for recurrent neural networks. Our proposed RNN is based on a time-discretization of a system of second-order ordinary differential equations, modeling ...Report -
Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences
(2020)SAM Research ReportWe propose a deep supervised learning algorithm based on low-discrepancy sequences as the training set. By a combination of theoretical arguments and extensive numerical experiments we demonstrate that the proposed algorithm significantly outperforms standard deep learning algorithms that are based on randomly chosen training data, for problems in moderately high dimensions. The proposed algorithm provides an efficient method for building ...Report -
Gradient Gating for Deep Multi-Rate Learning on Graphs
(2022)SAM Research ReportWe present Gradient Gating (G2), a novel framework for improving the performance of Graph Neural Networks (GNNs). Our framework is based on gating the output of GNN layers with a mechanism for multi-rate flow of message passing information across nodes of the underlying graph. Local gradients are harnessed to further modulate message passing updates. Our framework flexibly allows one to use any basic GNN layer as a wrapper around which ...Report -
Neural Oscillators are Universal
(2023)SAM Research ReportCoupled oscillators are being increasingly used as the basis of machine learning (ML) architectures, for instance in sequence modeling, graph representation learning and in physical neural networks that are used in analog ML devices. We introduce an abstract class of neural oscillators that encompasses these architectures and prove that neural oscillators are universal, i.e, they can approximate any continuous and casual operator mapping ...Report