Search
Results
-
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
(2022)SAM Research ReportWe prove rigorous bounds on the errors resulting from the approximation of the incompressible Navier-Stokes equations with (extended) physics informed neural networks. We show that the underlying PDE residual can be made arbitrarily small for tanh neural networks with two hidden layers. Moreover, the total error can be estimated in terms of the training error, network size and number of quadrature points. The theory is illustrated with ...Report -
Variable-Input Deep Operator Networks
(2022)SAM Research ReportExisting architectures for operator learning require that the number and locations of sensors (where the input functions are evaluated) remain the same across all training and test samples, significantly restricting the range of their applicability. We address this issue by proposing a novel operator learning framework, termed Variable-Input Deep Operator Network (VIDON), which allows for random sensors whose number and locations can vary ...Report -
Generic bounds on the approximation error for physics-informed (and) operator learning
(2022)SAM Research ReportWe propose a very general framework for deriving rigorous bounds on the approximation error for physics-informed neural networks (PINNs) and operator learning architectures such as DeepONets and FNOs as well as for physics-informed operator learning. These bounds guarantee that PINNs and (physics-informed) DeepONets or FNOs will efficiently approximate the underlying solution or solution operator of generic partial differential equations ...Report -
Error analysis for deep neural network approximations of parametric hyperbolic conservation laws
(2022)SAM Research ReportWe derive rigorous bounds on the error resulting from the approximation of the solution of parametric hyperbolic scalar conservation laws with ReLU neural networks. We show that the approximation error can be made as small as desired with ReLU neural networks that overcome the curse of dimensionality. In addition, we provide an explicit upper bound on the generalization error in terms of the training error, number of training samples and ...Report -
Weak physics informed neural networks for approximating entropy solutions of hyperbolic conservation laws
(2022)SAM Research ReportPhysics informed neural networks (PINNs) require regularity of solutions of the underlying PDE to guarantee accurate approximation. Consequently, they may fail at approximating discontinuous solutions of PDEs such as nonlinear hyperbolic equations. To ameliorate this, we propose a novel variant of PINNs, termed as weak PINNs (wPINNs) for accurate approximation of entropy solutions of scalar conservation laws. wPINNs are based on approximating ...Report