Search
Results
-
Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
(2024)SAM Research ReportPhysics-informed neural networks (PINNs) and their variants have been very popular in recent years as algorithms for the numerical simulation of both forward and inverse problems for partial differential equations. This article aims to provide a comprehensive review of currently available results on the numerical analysis of PINNs and related models that constitute the backbone of physics-informed machine learning. We provide a unified ...Report -
The Language of Hyperelastic Materials
(2024)SAM Research ReportThe automated discovery of constitutive laws forms an emerging area that focuses on automatically obtaining symbolic expressions describing the constitutive behavior of solid materials from experimental data. Existing symbolic/sparse regression methods rely on availability of libraries of material models, which are typically hand-designed by a human expert relying on known models as reference, or deploy generative algorithms with exponential ...Report -
FUSE: Fast Unified Simulation and Estimation for PDEs
(2024)SAM Research ReportThe joint prediction of continuous fields and statistical estimation of the underlying discrete parameters is a common problem for many physical systems, governed by PDEs. Hitherto, it has been separately addressed by employing operator learning surrogates for field prediction while using simulation-based inference (and its variants) for statistical parameter determination. Here, we argue that solving both problems within the same framework ...Report -
Poseidon: Efficient Foundation Models for PDEs
(2024)SAM Research ReportWe introduce Poseidon, a foundation model for learning the solution operators of PDEs. It is based on a multiscale operator transformer, with time-conditioned layer norms that enable continuous-in-time evaluations. A novel training strategy leveraging the semi-group property of time-dependent PDEs to allow for significant scaling-up of the training data is also proposed. Poseidon is pretrained on a diverse, large scale dataset for the ...Report -
Efficient Computation of Large-Scale Statistical Solutions to Incompressible Fluid Flows
(2024)SAM Research ReportThis work presents the development, performance analysis and subsequent optimization of a GPU-based spectral hyperviscosity solver for turbulent flows described by the three dimensional incompressible Navier-Stokes equations. The method solves for the fluid velocity fields directly in Fourier space, eliminating the need to solve a large-scale linear system of equations in order to find the pressure field. Special focus is put on the ...Report