Show simple item record

dc.contributor.author
Ojha, Varun Kumar
dc.contributor.author
Abraham, Ajith
dc.contributor.author
Snášel, Václav
dc.date.accessioned
2019-09-04T12:28:28Z
dc.date.available
2017-12-19T09:08:37Z
dc.date.available
2017-12-19T10:22:57Z
dc.date.available
2019-02-18T08:05:51Z
dc.date.available
2019-09-04T12:28:28Z
dc.date.issued
2017-04
dc.identifier.issn
0952-1976
dc.identifier.other
10.1016/j.engappai.2017.01.013
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/222530
dc.identifier.doi
10.3929/ethz-b-000222530
dc.description.abstract
Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
MACHINE LEARNING (ARTIFICIAL INTELLIGENCE)
en_US
dc.subject
NEURAL NETWORKS + CONNECTIONISM (ARTIFICIAL INTELLIGENCE)
en_US
dc.title
Metaheuristic design of feedforward neural networks: A review of two decades of research
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2017-02-10
ethz.journal.title
Engineering Applications of Artificial Intelligence
ethz.journal.volume
60
en_US
ethz.journal.abbreviated
Eng. Appl. Artif. Intell.
ethz.pages.start
97
en_US
ethz.pages.end
116
en_US
ethz.size
55 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02602 - Inst. f. Technologie in der Architektur / Institute for Technology in Architecture::03276 - Schmitt, Gerhard (emeritus) / Schmitt, Gerhard (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02602 - Inst. f. Technologie in der Architektur / Institute for Technology in Architecture::03276 - Schmitt, Gerhard (emeritus) / Schmitt, Gerhard (emeritus)
en_US
ethz.tag
Feedforward neural network
en_US
ethz.tag
Metaheuristics
en_US
ethz.tag
Nature-inspired algorithms
en_US
ethz.tag
Ensemble
en_US
ethz.tag
Multiobjective
en_US
ethz.tag
Deep Learning
en_US
ethz.date.deposited
2017-12-19T09:08:38Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Open access
en_US
ethz.date.embargoend
2019-02-10
ethz.rosetta.installDate
2017-12-19T10:22:59Z
ethz.rosetta.lastUpdated
2019-09-04T12:28:38Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Metaheuristic%20design%20of%20feedforward%20neural%20networks:%20A%20review%20of%20two%20decades%20of%20research&rft.jtitle=Engineering%20Applications%20of%20Artificial%20Intelligence&rft.date=2017-04&rft.volume=60&rft.spage=97&rft.epage=116&rft.issn=0952-1976&rft.au=Ojha,%20Varun%20Kumar&Abraham,%20Ajith&Sn%C3%A1%C5%A1el,%20V%C3%A1clav&rft.genre=article&rft_id=info:doi/10.1016/j.engappai.2017.01.013&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record