Show simple item record

dc.contributor.author
Fillmer, Ariane
dc.contributor.author
Hock, Andreas
dc.contributor.author
Cameron, Donnie
dc.contributor.author
Henning, Anke
dc.date.accessioned
2018-01-19T14:28:33Z
dc.date.available
2017-12-28T03:43:03Z
dc.date.available
2018-01-19T14:28:33Z
dc.date.issued
2017
dc.identifier.other
10.1038/s41598-017-16318-0
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/224746
dc.identifier.doi
10.3929/ethz-b-000224746
dc.description.abstract
Conditions such as type II diabetes are linked with elevated lipid levels in the heart, and significantly increased risk of heart failure; however, metabolic processes underlying the development of cardiac disease in type II diabetes are not fully understood. Here we present a non-invasive method for in vivo investigation of cardiac lipid metabolism: namely, IVS-McPRESS. This technique uses metabolite-cycled, non-water suppressed 1H cardiac magnetic resonance spectroscopy with prospective and retrospective motion correction. High-quality IVS-McPRESS data acquired from healthy volunteers allowed us to investigate the frequency shift of extramyocellular lipid signals, which depends on the myocardial fibre orientation. Assuming consistent voxel positioning relative to myofibres, the myofibre angle with the magnetic field was derived from the voxel orientation. For separation and individual analysis of intra- and extramyocellular lipid signals, the angle myocardial fibres in the spectroscopy voxel take with the magnetic field should be within ±24.5°. Metabolite and lipid concentrations were analysed with respect to BMI. Significant correlations between BMI and unsaturated fatty acids in intramyocellular lipids, and methylene groups in extramyocellular lipids were found. The proposed IVS-McPRESS technique enables non-invasive investigation of cardiac lipid metabolism and may thus be a useful tool to study healthy and pathological conditions.
en_US
dc.language.iso
en
en_US
dc.publisher
Nature Publishing Group
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Non-Water-Suppressed 1H MR Spectroscopy with Orientational Prior Knowledge Shows Potential for Separating Intra- and Extramyocellular Lipid Signals in Human Myocardium
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2017-12-04
ethz.journal.title
Scientific Reports
ethz.journal.volume
7
en_US
ethz.journal.issue
1
en_US
ethz.pages.start
16898
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2017-12-28T03:43:03Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-01-19T14:28:38Z
ethz.rosetta.lastUpdated
2019-01-02T11:26:06Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Non-Water-Suppressed%201H%20MR%20Spectroscopy%20with%20Orientational%20Prior%20Knowledge%20Shows%20Potential%20for%20Separating%20Intra-%20and%20Extramyocellular%20Lipid&rft.jtitle=Scientific%20Reports&rft.date=2017&rft.volume=7&rft.issue=1&rft.spage=16898&rft.au=Fillmer,%20Ariane&Hock,%20Andreas&Cameron,%20Donnie&Henning,%20Anke&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record