Show simple item record

dc.contributor.author
Ehret, Alexander E.
dc.contributor.author
Bircher, Kevin
dc.contributor.author
Stracuzzi, Alberto
dc.contributor.author
Marina, Vita
dc.contributor.author
Zündel, Manuel
dc.contributor.author
Mazza, Edoardo
dc.date.accessioned
2018-02-14T08:58:53Z
dc.date.available
2017-10-29T02:51:18Z
dc.date.available
2017-11-01T13:20:57Z
dc.date.available
2018-01-03T08:06:16Z
dc.date.available
2018-02-13T09:13:08Z
dc.date.available
2018-02-14T08:58:53Z
dc.date.issued
2017-12
dc.identifier.other
10.1038/s41467-017-00801-3
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/240289
dc.identifier.doi
10.3929/ethz-b-000202039
dc.description.abstract
Understanding the mechanisms of deformation of biological materials is important for improved diagnosis and therapy, fundamental investigations in mechanobiology, and applications in tissue engineering. Here we demonstrate the essential role of interstitial fluid mobility in determining the mechanical properties of soft tissues. Opposite to the behavior expected for a poroelastic material, the tissue volume of different collagenous membranes is observed to strongly decrease with tensile loading. Inverse poroelasticity governs monotonic and cyclic responses of soft biomembranes, and induces chemo-mechanical coupling, such that tensile forces are modulated by the chemical potential of the interstitial fluid. Correspondingly, the osmotic pressure varies with mechanical loads, thus providing an effective mechanism for mechanotransduction. Water mobility determines the tissue’s ability to adapt to deformation through compaction and dilation of the collagen fiber network. In the near field of defects this mechanism activates the reversible formation of reinforcing collagen structures which effectively avoid propagation of cracks.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature Publishing Group
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2017-10-17
ethz.journal.title
Nature Communications
ethz.journal.volume
8
en_US
ethz.journal.issue
1
en_US
ethz.pages.start
1002
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::03605 - Mazza, Edoardo / Mazza, Edoardo
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::03605 - Mazza, Edoardo / Mazza, Edoardo
en_US
ethz.date.deposited
2017-10-29T02:51:19Z
ethz.source
SCOPUS
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-02-13T09:11:45Z
ethz.rosetta.lastUpdated
2018-09-01T06:53:24Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/202039
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/225043
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Inverse%20poroelasticity%20as%20a%20fundamental%20mechanism%20in%20biomechanics%20and%20mechanobiology&rft.jtitle=Nature%20Communications&rft.date=2017-12&rft.volume=8&rft.issue=1&rft.spage=1002&rft.au=Ehret,%20Alexander%20E.&Bircher,%20Kevin&Stracuzzi,%20Alberto&Marina,%20Vita&Z%C3%BCndel,%20Manuel&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record