Search for axionlike dark matter through nuclear spin precession in electric and magnetic fields

Open access
Author
Abel, Christopher
Ayres, Nicholas J.
Ban, Giles
Bison, Georg
Bodek, Kazimierz
Bondar, V.
Daum, Manfred
Fairbairn, Malcolm
Flambaum, Victor V.
Geltenbort, Peter
Green, K.
Griffith, William C.
Van Der Grinten, Maurits
Grujić, Zoran D.
Harris, P.G.
Hild, N.
Iaydjiev, P.
Ivanov, Sergey N.
Kasprzak, Małgorzata
Kermaïdic, Y.
Kirch, Klaus
Koch, Hans C.
Komposch, S.
Koß, Peter A.
Kozela, Adam
Krempel, Jochen
Stadnik, Yevgeny V.
Lauss, Bernhard
Lefort, T.
Lemière, Yves
Marsh, David J.E.
Mohanmurthy, Prajwal
Mtchedlishvili, Aliko
Musgrave, M.
Piegsa, Florian M.
Pignol, Guillaume
Rawlik, Michal
Rebreyend, Dominique
Ries, Dieter
Roccia, Stéphanie
Rozpȩdzik, Dagmara
Schmidt-Wellenburg, P.
Severijns, Nathal
Shiers, D.
Weis, Antoine
Wursten, Elisabeth
Zejma, Jacek
Zsigmond, Géza
Date
2017Type
- Journal Article
Abstract
We report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spin-precession frequencies of stored ultracold neutrons and 199Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10−24≤ma≤10−17 eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40 Show more
Permanent link
https://doi.org/10.3929/ethz-b-000217066Publication status
publishedJournal / series
Physical Review XVolume
Pages / Article No.
Publisher
American Institute of PhysicsOrganisational unit
03864 - Kirch, Klaus / Kirch, Klaus
Funding
172639 - Precision Physics with Muons and Ultracold Neutrons (SNF)
162574 - Measurement of the neutron electric dipole moment (SNF)
More
Show all metadata