Privacy-enhancing Aggregation of Internet of Things Data via Sensors Grouping
Open access
Date
2018-05Type
- Journal Article
Abstract
Big data collection practices using Internet of Things (IoT) pervasive technologies are often privacy-intrusive and result in surveillance, profiling, and discriminatory actions over citizens that in turn undermine the participation of citizens to the development of sustainable smart cities. Nevertheless, real-time data analytics and aggregate information from IoT devices open up tremendous opportunities for managing and regulating smart city infrastructures in a more efficient and sustainable way. The privacy-enhancing aggregation of distributed sensor data, such as residential energy consumption or traffic information, is the research focus and challenge tackled in this paper. Citizens have the option to choose their privacy level by reducing the quality of the shared data at a cost of a lower accuracy in data analytics services. A baseline scenario is considered in which IoT sensor data are shared directly with an untrustworthy central aggregator. A grouping mechanism is introduced that improves privacy by sharing data aggregated first at a group level compared to a baseline scenario in which each individual shares data directly to the central aggregator. Group-level aggregation obfuscates sensor data of individuals, in a similar fashion as differential privacy and homomorphic encryption schemes, thus inference of privacy-sensitive information from single sensors becomes computationally harder compared to the baseline scenario. The proposed system and its generic applicability are evaluated using real-world data from two smart city pilot projects. Privacy under grouping increases, while preserving the accuracy of the baseline scenario. Intra-group influences of privacy by one group member on the other ones are measured and fairness on privacy is found to be maximized between group members with similar privacy choices. Several grouping strategies are compared. Grouping by proximity of privacy choices provides the highest privacy gains. The implications of the strategy on the design of incentives mechanisms are discussed. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000245849Publication status
publishedExternal links
Journal / series
Sustainable Cities and SocietyVolume
Pages / Article No.
Publisher
ElsevierSubject
Privacy; Internet of Things; Smart city; Network; Sensor; Grouping; Agent; AggregationOrganisational unit
03784 - Helbing, Dirk / Helbing, Dirk
03784 - Helbing, Dirk / Helbing, Dirk
Funding
324247 - Modeling the Emergence of Social Complexity and Order: How Individual and Societal Complexity Co-Evolve (EC)
More
Show all metadata