Show simple item record

dc.contributor.author
Herger, Nadja
dc.contributor.author
Abramowitz, Gab
dc.contributor.author
Knutti, Reto
dc.contributor.author
Angélil, Oliver
dc.contributor.author
Lehmann, Karsten
dc.contributor.author
Sanderson, Benjamin M.
dc.date.accessioned
2018-04-04T16:30:06Z
dc.date.available
2018-03-06T03:49:18Z
dc.date.available
2018-04-04T16:30:06Z
dc.date.issued
2018
dc.identifier.issn
2190-4987
dc.identifier.issn
2190-4979
dc.identifier.other
10.5194/esd-9-135-2018
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/246202
dc.identifier.doi
10.3929/ethz-b-000246202
dc.description.abstract
End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Copernicus
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.title
Selecting a climate model subset to optimise key ensemble properties
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
dc.date.published
2018-02-21
ethz.journal.title
Earth System Dynamics
ethz.journal.volume
9
en_US
ethz.journal.issue
1
en_US
ethz.pages.start
135
en_US
ethz.pages.end
151
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Göttingen
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02717 - Institut für Atmosphäre und Klima / Inst. Atmospheric and Climate Science::03777 - Knutti, Reto / Knutti, Reto
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02717 - Institut für Atmosphäre und Klima / Inst. Atmospheric and Climate Science::03777 - Knutti, Reto / Knutti, Reto
ethz.date.deposited
2018-03-06T03:49:21Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-04-04T16:30:20Z
ethz.rosetta.lastUpdated
2024-02-02T04:20:21Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Selecting%20a%20climate%20model%20subset%20to%20optimise%20key%20ensemble%20properties&rft.jtitle=Earth%20System%20Dynamics&rft.date=2018&rft.volume=9&rft.issue=1&rft.spage=135&rft.epage=151&rft.issn=2190-4987&2190-4979&rft.au=Herger,%20Nadja&Abramowitz,%20Gab&Knutti,%20Reto&Ang%C3%A9lil,%20Oliver&Lehmann,%20Karsten&rft.genre=article&rft_id=info:doi/10.5194/esd-9-135-2018&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record