Show simple item record

dc.contributor.author
Okamoto, Yasunori
dc.contributor.author
Kojima, Ryosuke
dc.contributor.author
Schwizer, Fabian
dc.contributor.author
Bartolami, Eline
dc.contributor.author
Heinisch, Tillmann
dc.contributor.author
Matile, Stefan
dc.contributor.author
Fussenegger, Martin
dc.contributor.author
Ward, Thomas R.
dc.date.accessioned
2018-05-25T13:38:57Z
dc.date.available
2018-05-25T04:14:14Z
dc.date.available
2018-05-25T13:38:57Z
dc.date.issued
2018-05-16
dc.identifier.issn
2041-1723
dc.identifier.other
10.1038/s41467-018-04440-0
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/265945
dc.identifier.doi
10.3929/ethz-b-000265945
dc.description.abstract
Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature Publishing Group
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Nature Communications
ethz.journal.volume
9
en_US
ethz.journal.abbreviated
Nat Commun
ethz.pages.start
1943
en_US
ethz.size
7 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03694 - Fussenegger, Martin / Fussenegger, Martin
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03694 - Fussenegger, Martin / Fussenegger, Martin
ethz.date.deposited
2018-05-25T04:14:49Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-05-25T13:39:04Z
ethz.rosetta.lastUpdated
2020-02-15T13:12:58Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20cell-penetrating%20artificial%20metalloenzyme%20regulates%20a%20gene%20switch%20in%20a%20designer%20mammalian%20cell&rft.jtitle=Nature%20Communications&rft.date=2018-05-16&rft.volume=9&rft.spage=1943&rft.issn=2041-1723&rft.au=Okamoto,%20Yasunori&Kojima,%20Ryosuke&Schwizer,%20Fabian&Bartolami,%20Eline&Heinisch,%20Tillmann&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record