Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides
dc.contributor.author
Stewart, Sydney M.
dc.contributor.author
Hofstetter, Thomas B.
dc.contributor.author
Joshi, Prachi
dc.contributor.author
Gorski, Christopher A.
dc.date.accessioned
2022-08-02T07:49:03Z
dc.date.available
2018-06-01T04:29:36Z
dc.date.available
2018-06-12T12:31:06Z
dc.date.available
2022-08-02T07:49:03Z
dc.date.issued
2018-05-15
dc.identifier.issn
1754-5692
dc.identifier.issn
1754-5706
dc.identifier.other
10.1021/acs.est.8b00481
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/267040
dc.identifier.doi
10.3929/ethz-b-000267040
dc.description.abstract
Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe2+) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential (EH) values for oxide-bound Fe2+ species. Recently, our group demonstrated that EH values for hematite- and goethite-bound Fe2+ can be accurately calculated using Gibbs free energy of formation values. Here, we tested if calculated EH values for oxide-bound Fe2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area-normalized rate constant (kSA) values and EH and pH values [log(kSA) = −EH/0.059 V – pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe2+ relates to redox reaction kinetics.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2018-03-29
ethz.journal.title
Energy & Environmental Science
ethz.journal.volume
52
en_US
ethz.journal.issue
10
en_US
ethz.journal.abbreviated
Energy Environ. Sci.
ethz.pages.start
5600
en_US
ethz.pages.end
5609
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2018-06-01T04:30:08Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-06-12T12:31:09Z
ethz.rosetta.lastUpdated
2023-02-07T04:56:38Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Linking%20Thermodynamics%20to%20Pollutant%20Reduction%20Kinetics%20by%20Fe2+%20Bound%20to%20Iron%20Oxides&rft.jtitle=Energy%20&%20Environmental%20Science&rft.date=2018-05-15&rft.volume=52&rft.issue=10&rft.spage=5600&rft.epage=5609&rft.issn=1754-5692&1754-5706&rft.au=Stewart,%20Sydney%20M.&Hofstetter,%20Thomas%20B.&Joshi,%20Prachi&Gorski,%20Christopher%20A.&rft.genre=article&rft_id=info:doi/10.1021/acs.est.8b00481&
Files in this item
Publication type
-
Journal Article [132236]