Sewer inlet localization in UAV image clouds: Improving performance with multiview detection
dc.contributor.author
Moy de Vitry, Matthew
dc.contributor.author
Schindler, Konrad
dc.contributor.author
Rieckermann, Jörg
dc.contributor.author
Leitão, João P.
dc.date.accessioned
2018-06-18T14:15:25Z
dc.date.available
2018-06-08T07:08:04Z
dc.date.available
2018-06-18T14:15:25Z
dc.date.issued
2018-05
dc.identifier.issn
2072-4292
dc.identifier.other
10.3390/rs10050706
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/268541
dc.identifier.doi
10.3929/ethz-b-000268541
dc.description.abstract
Sewer and drainage infrastructure are often not as well catalogued as they should be, considering the immense investment they represent. In this work, we present a fully automatic framework for localizing sewer inlets from image clouds captured from an unmanned aerial vehicle (UAV). The framework exploits the high image overlap of UAV imaging surveys with a multiview approach to improve detection performance. The framework uses a Viola–Jones classifier trained to detect sewer inlets in aerial images with a ground sampling distance of 3–3.5 cm/pixel. The detections are then projected into three-dimensional space where they are clustered and reclassified to discard false positives. The method is evaluated by cross-validating results from an image cloud of 252 UAV images captured over a 0.57-km2 study area with 228 sewer inlets. Compared to an equivalent single-view detector, the multiview approach improves both recall and precision, increasing average precision from 0.65 to 0.73. The source code and case study data are publicly available for reuse.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
infrastructure mapping
en_US
dc.subject
multiview
en_US
dc.subject
object detection
en_US
dc.subject
unmanned aerial vehicle
en_US
dc.subject
urban drainage
en_US
dc.subject
asset management
en_US
dc.title
Sewer inlet localization in UAV image clouds: Improving performance with multiview detection
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2018-05-04
ethz.journal.title
Remote Sensing
ethz.journal.volume
10
en_US
ethz.journal.issue
5
en_US
ethz.journal.abbreviated
Remote Sens.
ethz.pages.start
706
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.scopus
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02608 - Institut für Umweltingenieurwiss. / Institute of Environmental Engineering::03989 - Maurer, Max / Maurer, Max
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::03886 - Schindler, Konrad / Schindler, Konrad
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02608 - Institut für Umweltingenieurwiss. / Institute of Environmental Engineering::03989 - Maurer, Max / Maurer, Max
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::03886 - Schindler, Konrad / Schindler, Konrad
ethz.date.deposited
2018-06-08T07:08:18Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-06-18T14:15:32Z
ethz.rosetta.lastUpdated
2022-03-28T20:28:05Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Sewer%20inlet%20localization%20in%20UAV%20image%20clouds:%20Improving%20performance%20with%20multiview%20detection&rft.jtitle=Remote%20Sensing&rft.date=2018-05&rft.volume=10&rft.issue=5&rft.spage=706&rft.issn=2072-4292&rft.au=Moy%20de%20Vitry,%20Matthew&Schindler,%20Konrad&Rieckermann,%20J%C3%B6rg&Leit%C3%A3o,%20Jo%C3%A3o%20P.&rft.genre=article&rft_id=info:doi/10.3390/rs10050706&
Files in this item
Publication type
-
Journal Article [121839]