Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging
dc.contributor.author
Müller, Simon
dc.contributor.author
Pietsch, Patrick
dc.contributor.author
Brandt, Ben-Elias
dc.contributor.author
Baade, Paul
dc.contributor.author
De Andrade, Vincent
dc.contributor.author
De Carlo, Francesco
dc.contributor.author
Wood, Vanessa
dc.date.accessioned
2019-03-21T07:49:08Z
dc.date.available
2018-06-29T07:07:07Z
dc.date.available
2019-03-19T07:14:35Z
dc.date.available
2019-03-19T07:16:01Z
dc.date.available
2019-03-19T07:17:21Z
dc.date.available
2019-03-21T07:49:08Z
dc.date.issued
2018-06-14
dc.identifier.issn
2041-1723
dc.identifier.other
10.1038/s41467-018-04477-1
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/273031
dc.identifier.doi
10.3929/ethz-b-000271931
dc.description.abstract
Capacity fade in lithium-ion battery electrodes can result from a degradation mechanism in which the carbon black-binder network detaches from the active material. Here we present two approaches to visualize and quantify this detachment and use the experimental results to develop and validate a model that considers how the active particle size, the viscoelastic parameters of the composite electrode, the adhesion between the active particle and the carbon black-binder domain, and the solid electrolyte interphase growth rate impact detachment and capacity fade. Using carbon-silicon composite electrodes as a model system, we demonstrate X-ray nano-tomography and backscatter scanning electron microscopy with sufficient resolution and contrast to segment the pore space, active particles, and carbon black-binder domain and quantify delamination as a function of cycle number. The validated model is further used to discuss how detachment and capacity fade in high-capacity materials can be minimized through materials engineering.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Nature Communications
ethz.journal.volume
9
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Nat Commun
ethz.pages.start
2340
en_US
ethz.size
8 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02634 - Institut für Elektronik / Institute for Electronics::03895 - Wood, Vanessa / Wood, Vanessa
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02634 - Institut für Elektronik / Institute for Electronics::03895 - Wood, Vanessa / Wood, Vanessa
en_US
ethz.date.deposited
2018-06-25T07:04:44Z
ethz.source
FORM
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-06-29T07:07:17Z
ethz.rosetta.lastUpdated
2020-02-15T17:56:23Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/272978
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/271931
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Quantification%20and%20modeling%20of%20mechanical%20degradation%20in%20lithium-ion%20batteries%20based%20on%20nanoscale%20imaging&rft.jtitle=Nature%20Communications&rft.date=2018-06-14&rft.volume=9&rft.issue=1&rft.spage=2340&rft.issn=2041-1723&rft.au=M%C3%BCller,%20Simon&Pietsch,%20Patrick&Brandt,%20Ben-Elias&Baade,%20Paul&De%20Andrade,%20Vincent&rft.genre=article&rft_id=info:doi/10.1038/s41467-018-04477-1&
Files in this item
Publication type
-
Journal Article [124093]