Zur Kurzanzeige

dc.contributor.author
Bachem, Olivier
dc.contributor.author
Lucic, Mario
dc.contributor.author
Krause, Andreas
dc.date.accessioned
2018-08-24T09:31:29Z
dc.date.available
2018-08-24T08:18:30Z
dc.date.available
2018-08-24T09:21:54Z
dc.date.available
2018-08-24T09:31:29Z
dc.date.issued
2018
dc.identifier.isbn
978-1-4503-5552-0
en_US
dc.identifier.other
10.1145/3219819.3219973
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/284312
dc.language.iso
en
en_US
dc.publisher
Association for Computing Machinery
dc.subject
Clustering
en_US
dc.subject
Coresets
en_US
dc.subject
Big data
en_US
dc.subject
Distributed algorithms
en_US
dc.title
Scalable k -Means Clustering via Lightweight Coresets
en_US
dc.type
Conference Paper
ethz.book.title
KDD '18 Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
en_US
ethz.pages.start
1119
en_US
ethz.pages.end
1127
en_US
ethz.event
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD 2018)
en_US
ethz.event.location
London, United Kingdom
ethz.event.date
August 19 - 23, 2018
en_US
ethz.notes
Conference lecture on 20 August 2018
en_US
ethz.grant
Scaling Up by Scaling Down: Big ML via Small Coresets
en_US
ethz.grant
Large-scale Adaptive Sensing, Learning and Decision Making: Theory and Applications
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
ethz.grant.agreementno
167212
ethz.grant.agreementno
307036
ethz.grant.fundername
SNF
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
FP7
ethz.grant.program
NFP 75: Gesuch
ethz.date.deposited
2018-08-24T08:18:33Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2018-08-24T09:21:55Z
ethz.rosetta.lastUpdated
2021-02-15T01:23:10Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Scalable%20k%20-Means%20Clustering%20via%20Lightweight%20Coresets&rft.date=2018&rft.spage=1119&rft.epage=1127&rft.au=Bachem,%20Olivier&Lucic,%20Mario&Krause,%20Andreas&rft.isbn=978-1-4503-5552-0&rft.genre=proceeding&rft_id=info:doi/10.1145/3219819.3219973&rft.btitle=KDD%20'18%20Proceedings%20of%20the%2024th%20ACM%20SIGKDD%20International%20Conference%20on%20Knowledge%20Discovery%20&%20Data%20Mining
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige